a Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan , PR China.
b Structural Genomics Consortium , University of Toronto , Toronto , Ontario , Canada.
Crit Rev Biochem Mol Biol. 2019 Apr;54(2):119-132. doi: 10.1080/10409238.2019.1603199. Epub 2019 May 3.
Tudor domain-containing (TDRD) proteins, as a family of evolutionarily conserved proteins, have been studied extensively in recent years in terms of their biological and biochemical functions. A major function of the TDRD proteins is to recognize the N-terminal arginine-rich motifs of the P-element-induced wimpy testis (PIWI) proteins via their conserved extended Tudor (eTudor or eTud) domains, which is essential in piRNA biogenesis and germ cell development. In this review, we summarize recent progress in the study of the TDRD proteins, and discuss the molecular mechanisms for the different binding selectivity of these eTudor domains to PIWI proteins based on the available binding and structural data. Understanding the binding differences of these TDRDs to PIWI proteins will help us better understand their functional differences and aid us in developing the target-specific therapeutics, because overexpression or mutations of the human TDRD proteins have been demonstrated to associate with various diseases.
Tudor 结构域蛋白(TDRD)作为一类进化上保守的蛋白,近年来其生物学和生物化学功能得到了广泛的研究。TDRD 蛋白的一个主要功能是通过其保守的延伸 Tudor(eTudor 或 eTud)结构域识别 P 元素诱导的软弱睪丸(PIWI)蛋白的 N 端富含精氨酸的基序,这对于 piRNA 的生物发生和生殖细胞发育至关重要。在这篇综述中,我们总结了 TDRD 蛋白研究的最新进展,并根据现有结合和结构数据,讨论了这些 eTudor 结构域对 PIWI 蛋白具有不同结合选择性的分子机制。了解这些 TDRD 蛋白与 PIWI 蛋白的结合差异将有助于我们更好地理解它们的功能差异,并有助于我们开发针对特定靶点的治疗方法,因为已经证明人类 TDRD 蛋白的过表达或突变与各种疾病有关。