Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany.
Int J Mol Sci. 2023 Apr 25;24(9):7835. doi: 10.3390/ijms24097835.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying the structure and dynamics of proteins in their native state. For high-resolution NMR structure determination, the collection of a rich restraint dataset is necessary. This can be difficult to achieve for proteins with high molecular weight or a complex architecture. Computational modeling techniques can complement sparse NMR datasets (<1 restraint per residue) with additional structural information to elucidate protein structures in these difficult cases. The Rosetta software for protein structure modeling and design is used by structural biologists for structure determination tasks in which limited experimental data is available. This review gives an overview of the computational protocols available in the Rosetta framework for modeling protein structures from NMR data. We explain the computational algorithms used for the integration of different NMR data types in Rosetta. We also highlight new developments, including modeling tools for data from paramagnetic NMR and hydrogen-deuterium exchange, as well as chemical shifts in CS-Rosetta. Furthermore, strategies are discussed to complement and improve structure predictions made by the current state-of-the-art AlphaFold2 program using NMR-guided Rosetta modeling.
核磁共振(NMR)光谱学是研究蛋白质在天然状态下结构和动态的强大方法。对于高分辨率 NMR 结构测定,需要收集丰富的约束数据集。对于分子量高或结构复杂的蛋白质,这可能很难实现。计算建模技术可以用额外的结构信息来补充稀疏的 NMR 数据集(<1 个残基/约束),以阐明这些困难情况下的蛋白质结构。用于蛋白质结构建模和设计的 Rosetta 软件被结构生物学家用于在实验数据有限的情况下进行结构测定任务。本综述概述了 Rosetta 框架中用于从 NMR 数据建模蛋白质结构的可用计算方案。我们解释了用于在 Rosetta 中整合不同 NMR 数据类型的计算算法。我们还重点介绍了新的发展,包括用于顺磁 NMR 和氢氘交换数据以及 CS-Rosetta 中化学位移的建模工具。此外,还讨论了使用基于 NMR 的 Rosetta 建模来补充和改进当前最先进的 AlphaFold2 程序的结构预测的策略。