Suppr超能文献

一种用于管中实验室多相设备的低成本、非侵入式相速度和长度测量仪及控制器。

A low-cost, non-invasive phase velocity and length meter and controller for multiphase lab-in-a-tube devices.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, USA.

出版信息

Lab Chip. 2019 Jun 11;19(12):2107-2113. doi: 10.1039/c9lc00296k.

Abstract

Opportunities for accessible microfluidic device integration have sharply grown with the rise of readily available lab-in-a-tube strategies. Herein, we present a facile, non-invasive, plug-and-play phase velocity and length measuring strategy for rapid deployment onto tube-based microfluidic systems, enabling quick and accurate residence (reaction) time measurement and tuning. Our approach utilizes inexpensive off-the-shelf optical phase sensors and requires no prior knowledge of the fluid composition or physical properties. Compared to camera-based measurements in fluoropolymer tubing, the optical phase sensor-based technique shows mean absolute percentage errors of 1.3% for velocity and 3.3% for length. Utilizing the developed multiphase flow monitoring technique, we screen the accessible parameter space of gas-liquid segmented flows. To further demonstrate the functionality of this process monitoring strategy, we implement two feedback controllers to establish simultaneous setpoint control for phase velocity and length. Next, to showcase the effectiveness and versatility of the developed multiphase flow process controller, we apply it to systematic studies of the effect of liquid slug velocity (controlling precursor mixing timescale) on the colloidal synthesis of cesium lead tribromide nanocrystals. By varying the liquid slug velocity and maintaining constant precursor composition, liquid slug length, and residence time, we observe a bandgap tunability from 2.43 eV (510 nm) to 2.52 eV (494 nm).

摘要

随着易于获得的管内实验室策略的兴起,可访问的微流控设备集成机会急剧增加。在此,我们提出了一种简便、非侵入式、即插即用的相速度和长度测量策略,可快速部署到基于管的微流控系统上,实现快速准确的停留(反应)时间测量和调整。我们的方法利用廉价的现成光学相传感器,并且不需要事先了解流体组成或物理性质。与在氟聚合物管中基于相机的测量相比,基于光学相传感器的技术对于速度的平均绝对百分比误差为 1.3%,对于长度的平均绝对百分比误差为 3.3%。利用开发的多相流监测技术,我们筛选了气-液分段流的可访问参数空间。为了进一步展示这种过程监测策略的功能,我们实施了两个反馈控制器,以建立相速度和长度的同时设定点控制。接下来,为了展示开发的多相流过程控制器的有效性和多功能性,我们将其应用于系统研究液体弹丸速度(控制前体混合时间尺度)对铯铅溴纳米晶体胶体合成的影响。通过改变液体弹丸速度并保持恒定的前体组成、液体弹丸长度和停留时间,我们观察到带隙可调谐性从 2.43 eV(510nm)到 2.52 eV(494nm)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验