Wang Ke, Harzheim Achim, Taniguchi Takashi, Watanabei Kenji, Lee Ji Ung, Kim Philip
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55116, USA.
Phys Rev Lett. 2019 Apr 12;122(14):146801. doi: 10.1103/PhysRevLett.122.146801.
We report tunneling transport in spatially controlled networks of quantum Hall (QH) edge states in bilayer graphene. By manipulating the separation, location, and spatial span of QH edge states via gate-defined electrostatics, we observe resonant tunneling between copropagating QH states across incompressible strips. Employing spectroscopic tunneling measurements and an analytical model, we characterize the energy gap, width, density of states, and compressibility of the QH edge states with high precision and sensitivity within the same device. The capability to engineer the QH edge network also provides an opportunity to build future quantum electronic devices with electrostatic manipulation of QH edge states, supported by rich underlying physics.
我们报道了双层石墨烯中量子霍尔(QH)边缘态空间控制网络中的隧穿输运。通过利用栅极定义的静电学来操纵QH边缘态的间距、位置和空间跨度,我们观察到了跨不可压缩条带的同向传播QH态之间的共振隧穿。利用光谱隧穿测量和一个分析模型,我们在同一器件内以高精度和高灵敏度表征了QH边缘态的能隙、宽度、态密度和压缩性。设计QH边缘网络的能力也为利用QH边缘态的静电操纵构建未来量子电子器件提供了机会,这背后有丰富的物理原理作为支撑。