Suppr超能文献

转录效应对基因表达的影响可驱动全基因组遗传。

Trans Effects on Gene Expression Can Drive Omnigenic Inheritance.

机构信息

Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.

Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.

出版信息

Cell. 2019 May 2;177(4):1022-1034.e6. doi: 10.1016/j.cell.2019.04.014.

Abstract

Early genome-wide association studies (GWASs) led to the surprising discovery that, for typical complex traits, most of the heritability is due to huge numbers of common variants with tiny effect sizes. Previously, we argued that new models are needed to understand these patterns. Here, we provide a formal model in which genetic contributions to complex traits are partitioned into direct effects from core genes and indirect effects from peripheral genes acting in trans. We propose that most heritability is driven by weak trans-eQTL SNPs, whose effects are mediated through peripheral genes to impact the expression of core genes. In particular, if the core genes for a trait tend to be co-regulated, then the effects of peripheral variation can be amplified such that nearly all of the genetic variance is driven by weak trans effects. Thus, our model proposes a framework for understanding key features of the architecture of complex traits.

摘要

早期全基因组关联研究(GWAS)令人惊讶地发现,对于典型的复杂性状,大部分遗传率归因于大量具有微小效应大小的常见变异。在此之前,我们认为需要新的模型来理解这些模式。在这里,我们提供了一个正式的模型,其中将复杂性状的遗传贡献分为核心基因的直接效应和通过反式作用发挥作用的外围基因的间接效应。我们提出,大多数遗传率是由弱的跨表达数量性状基因座(eQTL) SNP 驱动的,其作用通过外围基因介导,从而影响核心基因的表达。特别是,如果一个性状的核心基因倾向于被共同调控,那么外围变异的影响可以被放大,以至于几乎所有的遗传方差都是由弱的跨效应驱动的。因此,我们的模型提出了一个理解复杂性状结构的关键特征的框架。

相似文献

1
Trans Effects on Gene Expression Can Drive Omnigenic Inheritance.
Cell. 2019 May 2;177(4):1022-1034.e6. doi: 10.1016/j.cell.2019.04.014.
2
Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.
PLoS Genet. 2011 Dec;7(12):e1002367. doi: 10.1371/journal.pgen.1002367. Epub 2011 Dec 1.
3
Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19398-19408. doi: 10.1073/pnas.1904159116. Epub 2019 Sep 9.
4
Heritability and tissue specificity of expression quantitative trait loci.
PLoS Genet. 2006 Oct 20;2(10):e172. doi: 10.1371/journal.pgen.0020172. Epub 2006 Aug 28.
7
The omnigenic model and polygenic prediction of complex traits.
Am J Hum Genet. 2021 Sep 2;108(9):1558-1563. doi: 10.1016/j.ajhg.2021.07.003. Epub 2021 Jul 30.
8
Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1,800 South Asians.
PLoS Genet. 2014 Dec 4;10(12):e1004818. doi: 10.1371/journal.pgen.1004818. eCollection 2014 Dec.
9
Enhancer Domains Predict Gene Pathogenicity and Inform Gene Discovery in Complex Disease.
Am J Hum Genet. 2020 Feb 6;106(2):215-233. doi: 10.1016/j.ajhg.2020.01.012.
10
Systematic differences in discovery of genetic effects on gene expression and complex traits.
Nat Genet. 2023 Nov;55(11):1866-1875. doi: 10.1038/s41588-023-01529-1. Epub 2023 Oct 19.

引用本文的文献

2
Regulatory network topology and the genetic architecture of gene expression.
bioRxiv. 2025 Aug 12:2025.08.12.669924. doi: 10.1101/2025.08.12.669924.
3
The Importance of Regulatory Network Structure for Complex Trait Heritability and Evolution.
Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf174.
4
Principled measures and estimates of trait polygenicity.
bioRxiv. 2025 Jul 15:2025.07.10.664154. doi: 10.1101/2025.07.10.664154.
6
Improved chromatin QTL mapping with CACTI.
bioRxiv. 2025 Jun 10:2025.06.06.657866. doi: 10.1101/2025.06.06.657866.
8
Perspective on recent developments and challenges in regulatory and systems genomics.
Bioinform Adv. 2025 May 9;5(1):vbaf106. doi: 10.1093/bioadv/vbaf106. eCollection 2025.
9
Transcripts with high distal heritability mediate genetic effects on complex metabolic traits.
Nat Commun. 2025 Jul 1;16(1):5507. doi: 10.1038/s41467-025-61228-9.
10
Decoding the interactions and functions of non-coding RNA with artificial intelligence.
Nat Rev Mol Cell Biol. 2025 Jun 19. doi: 10.1038/s41580-025-00857-w.

本文引用的文献

1
Extreme Polygenicity of Complex Traits Is Explained by Negative Selection.
Am J Hum Genet. 2019 Sep 5;105(3):456-476. doi: 10.1016/j.ajhg.2019.07.003. Epub 2019 Aug 8.
4
Evidence for Weak Selective Constraint on Human Gene Expression.
Genetics. 2019 Feb;211(2):757-772. doi: 10.1534/genetics.118.301833. Epub 2018 Dec 15.
6
Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk.
Nat Genet. 2018 Oct;50(10):1483-1493. doi: 10.1038/s41588-018-0196-7. Epub 2018 Sep 3.
7
Deep-coverage whole genome sequences and blood lipids among 16,324 individuals.
Nat Commun. 2018 Aug 23;9(1):3391. doi: 10.1038/s41467-018-05747-8.
8
Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations.
Nat Genet. 2018 Sep;50(9):1219-1224. doi: 10.1038/s41588-018-0183-z. Epub 2018 Aug 13.
9
Co-regulatory networks of human serum proteins link genetics to disease.
Science. 2018 Aug 24;361(6404):769-773. doi: 10.1126/science.aaq1327. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验