Suppr超能文献

利用人工智能解码非编码RNA的相互作用和功能。

Decoding the interactions and functions of non-coding RNA with artificial intelligence.

作者信息

Jung Vincent, Vincent-Cuaz Cédric, Tumescheit Charlotte, Fournier Lisa, Darsinou Marousa, Xu Zhi Ming, Saadat Ali, Wang Yiran, Tsantoulis Petros, Michielin Olivier, Fellay Jacques, Patani Rickie, Ramos Andres, Frossard Pascal, Hastings Janna, Riccio Antonella, van der Plas Lonneke, Luisier Raphaëlle

机构信息

Idiap Research Institute, Martigny, Switzerland.

Signal Processing Laboratory (LTS4), School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Nat Rev Mol Cell Biol. 2025 Jun 19. doi: 10.1038/s41580-025-00857-w.

Abstract

In addition to encoding proteins, mRNAs have context-specific regulatory roles that contribute to many cellular processes. However, uncovering new mRNA functions is constrained by limitations of traditional biochemical and computational methods. In this Roadmap, we highlight how artificial intelligence can transform our understanding of RNA biology by fostering collaborations between RNA biologists and computational scientists to drive innovation in this fundamental field of research. We discuss how non-coding regions of the mRNA, including introns and 5' and 3' untranslated regions, regulate the metabolism and interactomes of mRNA, and the current challenges in characterizing these regions. We further discuss large language models, which can be used to learn biologically meaningful RNA sequence representations. We also provide a detailed roadmap for integrating large language models with graph neural networks to harness publicly available sequencing and knowledge data. Adopting this roadmap will allow us to predict RNA interactions with diverse molecules and the modelling of context-specific mRNA interactomes.

摘要

除了编码蛋白质外,信使核糖核酸(mRNA)还具有特定背景的调节作用,这些作用参与了许多细胞过程。然而,传统生化方法和计算方法的局限性限制了新mRNA功能的发现。在本路线图中,我们强调人工智能如何通过促进RNA生物学家和计算科学家之间的合作来推动这一基础研究领域的创新,从而改变我们对RNA生物学的理解。我们讨论了mRNA的非编码区域,包括内含子以及5'和3'非翻译区,如何调节mRNA的代谢和相互作用组,以及在表征这些区域时目前面临的挑战。我们进一步讨论了大语言模型,其可用于学习具有生物学意义的RNA序列表示。我们还提供了一个详细的路线图,用于将大语言模型与图神经网络整合,以利用公开可用的测序和知识数据。采用此路线图将使我们能够预测RNA与多种分子的相互作用,并对特定背景的mRNA相互作用组进行建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验