Suppr超能文献

3D particle field reconstruction method based on convolutional neural network for SAPIV.

作者信息

Qu Xiangju, Song Yang, Jin Ying, Guo Zhenyan, Li Zhenhua, He Anzhi

出版信息

Opt Express. 2019 Apr 15;27(8):11413-11434. doi: 10.1364/OE.27.011413.

Abstract

Synthetic aperture particle image velocimetry (SAPIV) provides a non-invasive means of revealing the physics of complex flows using a compact camera array to resolve the 3D flow field with high temporal and spatial resolution. Intensity-threshold-based methods of reconstructing the flow field are unsatisfactory in nonuniform illuminated fluid flows. This article investigates the characteristics of the focused particles in re-projected image stacks, and presents a convolutional neural network (CNN)-based particle field reconstruction method. The CNN architecture determines the likelihood of each area containing focused particles in the re-projected 3D image stacks. The structural similarity between the images projected by the reconstructed particle field and the images captured from the cameras is then computed, allowing in-focus particles to be extracted. The feasibility of our method is investigated through synthetic simulations and experiments. The results show that the proposed technique achieves remarkable performance, paving the way for non-uniformly illuminated particle field applications in 3D velocity measurements.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验