Suppr超能文献

自推进在增强酶扩散中的作用的热力学限制。

A Thermodynamic Limit on the Role of Self-Propulsion in Enhanced Enzyme Diffusion.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California.

出版信息

Biophys J. 2019 May 21;116(10):1898-1906. doi: 10.1016/j.bpj.2019.04.005. Epub 2019 Apr 11.

Abstract

A number of enzymes reportedly exhibit enhanced diffusion in the presence of their substrates, with a Michaelis-Menten-like concentration dependence. Although no definite explanation of this phenomenon has emerged, a physical picture of enzyme self-propulsion using energy from the catalyzed reaction has been widely considered. Here, we present a kinematic and thermodynamic analysis of enzyme self-propulsion that is independent of any specific propulsion mechanism. Using this theory, along with biophysical data compiled for all enzymes so far shown to undergo enhanced diffusion, we show that the propulsion speed required to generate experimental levels of enhanced diffusion exceeds the speeds of well-known active biomolecules, such as myosin, by several orders of magnitude. Furthermore, the minimal power dissipation required to account for enzyme enhanced diffusion by self-propulsion markedly exceeds the chemical power available from enzyme-catalyzed reactions. Alternative explanations for the observation of enhanced enzyme diffusion therefore merit stronger consideration.

摘要

一些酶据称在其底物存在的情况下表现出增强的扩散,具有类似米氏-门坦的浓度依赖性。尽管尚未出现对此现象的明确解释,但利用催化反应产生的能量进行酶自主推进的物理图像已被广泛考虑。在这里,我们提出了一种与任何特定推进机制无关的酶自主推进的运动学和热力学分析。使用该理论以及迄今为止所有表现出增强扩散的酶的生物物理数据,我们表明,产生实验水平增强扩散所需的推进速度超过了肌球蛋白等知名活性生物分子的速度,超过几个数量级。此外,为了通过自主推进来解释酶增强扩散所需要的最小功率耗散明显超过了酶催化反应提供的化学功率。因此,需要更强烈地考虑观察到的增强酶扩散的替代解释。

相似文献

3
Enhanced Diffusion and Chemotaxis at the Nanoscale.纳米尺度上的扩散和化学趋性增强。
Acc Chem Res. 2018 Oct 16;51(10):2365-2372. doi: 10.1021/acs.accounts.8b00280. Epub 2018 Sep 21.
4
Enhanced Diffusion of Enzymes that Catalyze Exothermic Reactions.催化放热反应的酶的扩散增强。
Phys Rev Lett. 2015 Sep 4;115(10):108102. doi: 10.1103/PhysRevLett.115.108102.
6
Master curve of boosted diffusion for 10 catalytic enzymes.10 种催化酶的促进扩散主曲线。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29435-29441. doi: 10.1073/pnas.2019810117. Epub 2020 Nov 9.
7
Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy.利用荧光相关光谱法测量游动酶的扩散。
Acc Chem Res. 2018 Sep 18;51(9):1911-1920. doi: 10.1021/acs.accounts.8b00276. Epub 2018 Aug 30.

引用本文的文献

3
Chemically-powered swimming and diffusion in the microscopic world.微观世界中的化学动力游动与扩散。
Nat Rev Chem. 2021 Jul;5(7):500-510. doi: 10.1038/s41570-021-00281-6. Epub 2021 May 27.
10
Enhanced Diffusion of Catalytically Active Enzymes.催化活性酶的扩散增强
ACS Cent Sci. 2019 Jun 26;5(6):939-948. doi: 10.1021/acscentsci.9b00228. Epub 2019 May 15.

本文引用的文献

1
Direct Single Molecule Imaging of Enhanced Enzyme Diffusion.直接单分子成像增强酶扩散。
Phys Rev Lett. 2019 Sep 20;123(12):128101. doi: 10.1103/PhysRevLett.123.128101.
5
Catalytic enzymes are active matter.催化酶是活性物质。
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10812-E10821. doi: 10.1073/pnas.1814180115. Epub 2018 Nov 1.
6
Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers.酶驱动的微纳米游泳器的基本方面。
Acc Chem Res. 2018 Nov 20;51(11):2662-2671. doi: 10.1021/acs.accounts.8b00288. Epub 2018 Oct 10.
7
Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy.利用荧光相关光谱法测量游动酶的扩散。
Acc Chem Res. 2018 Sep 18;51(9):1911-1920. doi: 10.1021/acs.accounts.8b00276. Epub 2018 Aug 30.
8
Substrate-driven chemotactic assembly in an enzyme cascade.底物驱动的酶级联中的趋化性组装。
Nat Chem. 2018 Mar;10(3):311-317. doi: 10.1038/nchem.2905. Epub 2017 Dec 18.
9
Enzyme leaps fuel antichemotaxis.酶跳跃燃料反趋化性。
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):14-18. doi: 10.1073/pnas.1717844115. Epub 2017 Dec 18.
10
Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft.利用 DNA 折纸筏实时成像单分子酶级联反应。
J Am Chem Soc. 2017 Dec 6;139(48):17525-17532. doi: 10.1021/jacs.7b09323. Epub 2017 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验