Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
Eur Biophys J. 2023 Jul;52(4-5):459-471. doi: 10.1007/s00249-022-01626-9. Epub 2022 Dec 30.
Within the complex milieu of a cell, which comprises a large number of different biomolecules, interactions are critical for function. In this post-reductionist era of biochemical research, the 'holy grail' for studying biomolecular interactions is to be able to characterize them in native environments. While there are a limited number of in situ experimental techniques currently available, there is a continuing need to develop new methods for the analysis of biomolecular complexes that can cope with the additional complexities introduced by native-like solutions. We think approaches that use microfluidics allow researchers to access native-like environments for studying biological problems. This review begins with a brief overview of the importance of studying biomolecular interactions and currently available methods for doing so. Basic principles of diffusion and microfluidics are introduced and this is followed by a review of previous studies that have used microfluidics to measure molecular diffusion and a discussion of the advantages and challenges of this technique.
在细胞这个复杂的环境中,包含了大量不同的生物分子,相互作用对于功能至关重要。在这个后还原论的生物化学研究时代,研究生物分子相互作用的“圣杯”是能够在天然环境中对其进行表征。虽然目前可用的原位实验技术数量有限,但仍需要不断开发新的方法来分析能够应对天然样溶液带来的额外复杂性的生物分子复合物。我们认为,使用微流控技术的方法可以让研究人员接触到用于研究生物学问题的类似天然的环境。这篇综述首先简要概述了研究生物分子相互作用的重要性以及目前用于研究的方法。介绍了扩散和微流控的基本原理,然后回顾了以前使用微流控技术测量分子扩散的研究,并讨论了该技术的优点和挑战。