文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在预测缺血性卒中溶栓功能结局中的应用:一项初步研究。

Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes: A Pilot Study.

机构信息

Royal Adelaide Hospital, Australia.

Royal Adelaide Hospital, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Australia.

出版信息

Acad Radiol. 2020 Feb;27(2):e19-e23. doi: 10.1016/j.acra.2019.03.015. Epub 2019 Apr 30.


DOI:10.1016/j.acra.2019.03.015
PMID:31053480
Abstract

RATIONALE AND OBJECTIVES: Intravenous thrombolysis decision-making and obtaining of consent would be assisted by an individualized risk-benefit ratio. Deep learning (DL) models may be able to assist with this patient selection. MATERIALS AND METHODS: Clinical data regarding consecutive patients who received intravenous thrombolysis across two tertiary hospitals over a 7-year period were extracted from existing databases. The noncontrast computed tomography brain scans for these patients were then retrieved with hospital picture archiving and communication systems. Using a combination of convolutional neural networks (CNN) and artificial neural networks (ANN) several models were developed to predict either improvement in the National Institutes of Health Stroke Scale of ≥4 points at 24 hours ("NIHSS24"), or modified Rankin Scale 0-1 at 90 days ("mRS90"). The developed CNN and ANN were then applied to a test set. The THRIVE, HIAT, and SPAN-100 scores were also calculated for the patients in the test set and used to predict NIHSS24 and mRS90. RESULTS: Data from 204 individuals were included in the project. The best performing DL model for prediction of mRS90 was a combination CNN + ANN based on clinical data and computed tomography brain (accuracy = 0.74, F1 score = 0.69). The best performing model for NIHSS24 prediction was also the combination CNN + ANN (accuracy = 0.71, F1 score = 0.74). CONCLUSION: DL models may aid in the prediction of functional thrombolysis outcomes. Further investigation with larger datasets and additional imaging sequences is indicated.

摘要

背景与目的:通过个体化风险效益比,可以辅助进行静脉溶栓治疗的决策制定和获得知情同意。深度学习(DL)模型可能有助于进行这种患者选择。

材料与方法:从两家三级医院的现有数据库中提取了连续接受静脉溶栓治疗的患者的临床数据。然后使用医院图像存档和通信系统检索这些患者的非对比计算机断层扫描脑扫描。使用卷积神经网络(CNN)和人工神经网络(ANN)的组合,开发了几种模型来预测 24 小时内美国国立卫生研究院卒中量表(NIHSS)评分提高≥4 分(“NIHSS24”),或 90 天改良 Rankin 量表(mRS)0-1 分(“mRS90”)。将开发的 CNN 和 ANN 应用于测试集。还计算了 THRIVE、HIAT 和 SPAN-100 评分,并用于预测 NIHSS24 和 mRS90。

结果:该项目纳入了 204 名个体的数据。用于预测 mRS90 的表现最佳的 DL 模型是基于临床数据和计算机断层扫描脑的 CNN+ANN 组合(准确率=0.74,F1 分数=0.69)。用于预测 NIHSS24 的表现最佳的模型也是 CNN+ANN 组合(准确率=0.71,F1 分数=0.74)。

结论:DL 模型可能有助于预测功能溶栓治疗的结局。需要进一步进行更大数据集和额外成像序列的研究。

相似文献

[1]
Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes: A Pilot Study.

Acad Radiol. 2019-4-30

[2]
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.

Stroke. 2003-8

[3]
Predicting major neurologic improvement and long-term outcome after thrombolysis using artificial neural networks.

J Neurol Sci. 2020-3-15

[4]
Prediction of response to thrombolysis in acute stroke using neural network analysis of CT perfusion imaging.

Eur Stroke J. 2023-9

[5]
Threshold for NIH stroke scale in predicting vessel occlusion and functional outcome after stroke thrombolysis.

Int J Stroke. 2015-8

[6]
Thrombolysis risk prediction: applying the SITS-SICH and SEDAN scores in South African patients.

Cardiovasc J Afr. 2014

[7]
Thrombolysis for acute ischaemic stroke.

Cochrane Database Syst Rev. 2003

[8]
Deep learning in the detection of high-grade glioma recurrence using multiple MRI sequences: A pilot study.

J Clin Neurosci. 2019-10-21

[9]
Association of early National Institutes of Health Stroke Scale improvement with vessel recanalization and functional outcome after intravenous thrombolysis in ischemic stroke.

Stroke. 2011-4-21

[10]
Extending thrombolysis to 4·5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data.

Lancet. 2019-5-22

引用本文的文献

[1]
Automatic prediction of stroke treatment outcomes: latest advances and perspectives.

Biomed Eng Lett. 2025-2-17

[2]
Machine learning for early dynamic prediction of functional outcome after stroke.

Commun Med (Lond). 2024-11-13

[3]
Deep learning model integrating radiologic and clinical data to predict mortality after ischemic stroke.

Heliyon. 2024-5-16

[4]
Software with artificial intelligence-derived algorithms for analysing CT brain scans in people with a suspected acute stroke: a systematic review and cost-effectiveness analysis.

Health Technol Assess. 2024-3

[5]
Uncertainty-aware deep learning for trustworthy prediction of long-term outcome after endovascular thrombectomy.

Sci Rep. 2024-3-6

[6]
Scaling behaviours of deep learning and linear algorithms for the prediction of stroke severity.

Brain Commun. 2024-1-10

[7]
Systematic Review of Machine Learning Applied to the Secondary Prevention of Ischemic Stroke.

J Med Syst. 2024-1-2

[8]
Deep Learning-Based Extraction of Biomarkers for the Prediction of the Functional Outcome of Ischemic Stroke Patients.

Diagnostics (Basel). 2023-12-5

[9]
A weakly supervised deep learning model integrating noncontrasted computed tomography images and clinical factors facilitates haemorrhagic transformation prediction after intravenous thrombolysis in acute ischaemic stroke patients.

Biomed Eng Online. 2023-12-19

[10]
Artificial intelligence applied in acute ischemic stroke: from child to elderly.

Radiol Med. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索