Department of Neuroradiology, Friedrich-Alexander University of Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
Pattern Recognition Lab, Friedrich Alexander University, Erlangen, Germany.
Sci Rep. 2024 Mar 6;14(1):5544. doi: 10.1038/s41598-024-55761-8.
Acute ischemic stroke (AIS) is a leading global cause of mortality and morbidity. Improving long-term outcome predictions after thrombectomy can enhance treatment quality by supporting clinical decision-making. With the advent of interpretable deep learning methods in recent years, it is now possible to develop trustworthy, high-performing prediction models. This study introduces an uncertainty-aware, graph deep learning model that predicts endovascular thrombectomy outcomes using clinical features and imaging biomarkers. The model targets long-term functional outcomes, defined by the three-month modified Rankin Score (mRS), and mortality rates. A sample of 220 AIS patients in the anterior circulation who underwent endovascular thrombectomy (EVT) was included, with 81 (37%) demonstrating good outcomes (mRS 2). The performance of the different algorithms evaluated was comparable, with the maximum validation under the curve (AUC) reaching 0.87 using graph convolutional networks (GCN) for mRS prediction and 0.86 using fully connected networks (FCN) for mortality prediction. Moderate performance was obtained at admission (AUC of 0.76 using GCN), which improved to 0.84 post-thrombectomy and to 0.89 a day after stroke. Reliable uncertainty prediction of the model could be demonstrated.
急性缺血性脑卒中(AIS)是全球主要的致死和致残原因之一。提高血管内取栓治疗后的长期预后预测能力,可以通过支持临床决策来提高治疗质量。近年来,可解释的深度学习方法的出现,使得开发可靠、高性能的预测模型成为可能。本研究提出了一种不确定性感知的图深度学习模型,该模型使用临床特征和影像生物标志物来预测血管内取栓治疗的结局。该模型的目标是长期的功能结局,定义为三个月时的改良 Rankin 评分(mRS)和死亡率。纳入了 220 例接受血管内取栓治疗(EVT)的前循环 AIS 患者,其中 81 例(37%)预后良好(mRS 2)。评估的不同算法的性能相当,使用图卷积网络(GCN)进行 mRS 预测的最大验证曲线下面积(AUC)达到 0.87,使用全连接网络(FCN)进行死亡率预测的 AUC 达到 0.86。入院时的表现中等(使用 GCN 的 AUC 为 0.76),取栓后改善至 0.84,发病后一天提高至 0.89。可以证明该模型具有可靠的不确定性预测能力。