Suppr超能文献

60种挥发性有机化合物的土地利用回归模型:比较谷歌兴趣点(POI)数据与城市许可数据

Land Use Regression models for 60 volatile organic compounds: Comparing Google Point of Interest (POI) and city permit data.

作者信息

Lu Tianjun, Lansing Jennifer, Zhang Wenwen, Bechle Matthew J, Hankey Steve

机构信息

School of Public and International Affairs, Virginia Tech, 140 Otey Street, Blacksburg, VA 24061, United States.

Minneapolis Health Department, 250 S. Fourth Street, Minneapolis, MN 55415, United States.

出版信息

Sci Total Environ. 2019 Aug 10;677:131-141. doi: 10.1016/j.scitotenv.2019.04.285. Epub 2019 Apr 24.

Abstract

Land Use Regression (LUR) models of Volatile Organic Compounds (VOC) normally focus on land use (e.g., industrial area) or transportation facilities (e.g., roadway); here, we incorporate area sources (e.g., gas stations) from city permitting data and Google Point of Interest (POI) data to compare model performance. We used measurements from 50 community-based sampling locations (2013-2015) in Minneapolis, MN, USA to develop LUR models for 60 VOCs. We used three sets of independent variables: (1) base-case models with land use and transportation variables, (2) models that add area source variables from local business permit data, and (3) models that use Google POI data for area sources. The models with Google POI data performed best; for example, the total VOC (TVOC) model has better goodness-of-fit (adj-R: 0.56; Root Mean Square Error [RMSE]: 0.32 μg/m) as compared to the permit data model (0.42; 0.37) and the base-case model (0.26; 0.41). Area source variables were selected in over two thirds of models among the 60 VOCs at small-scale buffer sizes (e.g., 25 m-500 m). Our work suggests that VOC LUR models can be developed using community-based sampling and that models improve by including area sources as measured by business permit and Google POI data.

摘要

挥发性有机化合物(VOC)的土地利用回归(LUR)模型通常侧重于土地利用(如工业区)或交通设施(如道路);在此,我们纳入来自城市许可数据和谷歌兴趣点(POI)数据的面源(如加油站),以比较模型性能。我们使用了美国明尼苏达州明尼阿波利斯市50个基于社区的采样点(2013 - 2015年)的测量数据,来开发60种VOC的LUR模型。我们使用了三组自变量:(1)包含土地利用和交通变量的基础模型,(2)添加来自当地商业许可数据的面源变量的模型,以及(3)使用谷歌POI数据作为面源的模型。使用谷歌POI数据的模型表现最佳;例如,总挥发性有机化合物(TVOC)模型的拟合优度更好(调整R:0.56;均方根误差[RMSE]:0.32μg/m),相比许可数据模型(0.42;0.37)和基础模型(0.26;0.41)。在60种VOC的模型中,超过三分之二的模型在小尺度缓冲距离(如25m - 500m)下选择了面源变量。我们的工作表明,可以使用基于社区的采样来开发VOC的LUR模型,并且通过纳入商业许可和谷歌POI数据测量的面源,模型性能会得到提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验