Suppr超能文献

美国底特律/迪尔伯恩市基于学校的城市空气监测中挥发性有机化合物(VOCs)和二氧化氮(NO₂)的空间分析与土地利用回归

Spatial analysis and land use regression of VOCs and NO(2) from school-based urban air monitoring in Detroit/Dearborn, USA.

作者信息

Mukerjee Shaibal, Smith Luther A, Johnson Mary M, Neas Lucas M, Stallings Casson A

机构信息

National Exposure Research Laboratory, U.S. Environmental Protection Agency (E205-03), Research Triangle Park, NC 27711, USA.

出版信息

Sci Total Environ. 2009 Aug 1;407(16):4642-51. doi: 10.1016/j.scitotenv.2009.04.030. Epub 2009 May 20.

Abstract

Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.

摘要

2005年夏季,在美国密歇根州底特律市和迪尔伯恩市的25所学校及两个合规监测点,开展了针对二氧化氮(NO₂)和挥发性有机化合物(VOCs)的被动式环境空气采样。对116所学校中的每一所都计算了地理信息系统(GIS)数据。对选定的25所学校进行监测,以评估和模拟城市内部空气污染物梯度,从而评估交通和城市排放对污染物水平的影响。选择学校时考虑了城市土地利用变量的统计代表性,如距主要道路的距离、学校周边的交通强度、距最近点源的距离、人口密度以及距最近边境口岸的距离。采用了两种方法来研究空间变异性。首先,对学校数据进行Kruskal-Wallis分析和成对比较,以基于城市区域和距交通繁忙道路的距离来研究粗略的空间差异。其次,通过土地利用回归(LUR)模型,经由多元线性回归,评估更精细尺度上以及作为对多种因素响应的空间变异性。对于为期一周的暴露情况,VOCs在城市区域或距主要道路的距离方面未表现出空间变异性;在受交通和工业影响为主的区域,NO₂浓度显著高于住宅区。与粗略空间分析 somewhat 相反的是,LUR结果揭示了该区域内NO₂和选定VOCs的空间梯度。用于选择具有空间代表性的空气采样点的过程以及空气污染物粗略和精细空间变异性的结果提供了一些见解,可能会指导未来评估城市内部梯度的空气质量研究。 (注:原文中“Somewhat in contrast to coarse spatial analyses”里“Somewhat”翻译为“ somewhat”是因为不确定其准确含义,可能是“有点”之类的意思,需结合上下文进一步确定准确翻译,这里先保留英文。)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验