Tan Dongxing, Zhang Jianling, Cheng Xiuyan, Tan Xiuniang, Shi Jinbiao, Zhang Bingxing, Han Buxing, Zheng Lirong, Zhang Jing
Beijing National Laboratory for Molecular Sciences , CAS Key Laboratory of Colloid , Interface and Chemical Thermodynamics , Institute of Chemistry , Chinese Academy of Sciences , School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China . Email:
Beijng Synchrotron Radiation Facility (BSRF) , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , P. R. China.
Chem Sci. 2019 Mar 15;10(16):4491-4496. doi: 10.1039/c9sc00174c. eCollection 2019 Apr 28.
The electrocatalytic conversion of CO to CO using non-noble metal catalysts under mild conditions is of great importance. Achieving the combination of high activity, selectivity and current density by developing electrocatalysts with desirable compositions and structures is challenging. Here we prepared for the first time Cu Ni alloy nanoparticles embedded in a nitrogen-carbon network. Such an electrocatalyst not only well overcomes the disadvantages of single Cu and Ni catalysts but has a high CO adsorption capacity. Outstandingly, the catalyst can effectively convert CO into CO with a maximum faradaic efficiency of 94.5% and current density of 18.8 mA cm at a low applied potential of -0.60 V ( reversible hydrogen electrode, RHE). Moreover, the catalyst is very stable during long-term electrolysis owing to the stabilization of the nitrogen-carbon network.
在温和条件下使用非贵金属催化剂将CO电催化转化为CO具有重要意义。通过开发具有理想组成和结构的电催化剂来实现高活性、选择性和电流密度的结合具有挑战性。在此,我们首次制备了嵌入氮碳网络中的CuNi合金纳米颗粒。这种电催化剂不仅很好地克服了单一Cu和Ni催化剂的缺点,而且具有高的CO吸附容量。值得注意的是,该催化剂能够在-0.60 V(可逆氢电极,RHE)的低施加电位下有效地将CO转化为CO,最大法拉第效率为94.5%,电流密度为18.8 mA cm。此外,由于氮碳网络的稳定性,该催化剂在长期电解过程中非常稳定。