Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and CAS Key Laboratory of Mechanical Behavior and Design of Materials, ‡CAS Key Lab of Materials for Energy Conversion, Department of Materials Science and Engineering, and §National Synchrotron Radiation Laboratory, University of Science and Technology of China , Hefei 230026, P.R. China.
J Am Chem Soc. 2017 Oct 25;139(42):14889-14892. doi: 10.1021/jacs.7b09074. Epub 2017 Oct 13.
Electrochemical reduction of carbon dioxide (CO) to value-added carbon products is a promising approach to reduce CO levels and mitigate the energy crisis. However, poor product selectivity is still a major obstacle to the development of CO reduction. Here we demonstrate exclusive Ni-N sites through a topo-chemical transformation strategy, bringing unprecedentedly high activity and selectivity for CO reduction. Topo-chemical transformation by carbon layer coating successfully ensures preservation of the Ni-N structure to a maximum extent and avoids the agglomeration of Ni atoms to particles, providing abundant active sites for the catalytic reaction. The Ni-N structure exhibits excellent activity for electrochemical reduction of CO with particularly high selectivity, achieving high faradaic efficiency over 90% for CO in the potential range from -0.5 to -0.9 V and gives a maximum faradaic efficiency of 99% at -0.81 V with a current density of 28.6 mA cm. We anticipate exclusive catalytic sites will shed new light on the design of high-efficiency electrocatalysts for CO reduction.
电化学还原二氧化碳(CO)为高附加值碳产品是减少 CO 水平和缓解能源危机的一种很有前途的方法。然而,较差的产物选择性仍然是 CO 还原发展的主要障碍。在这里,我们通过拓扑化学转化策略证明了独特的 Ni-N 位,为 CO 还原带来了前所未有的高活性和选择性。通过碳层涂层的拓扑化学转化成功地最大限度地保证了 Ni-N 结构的保留,避免了 Ni 原子团聚成颗粒,为催化反应提供了丰富的活性位点。Ni-N 结构对 CO 的电化学还原具有优异的活性,特别具有高选择性,在 -0.5 至 -0.9 V 的电位范围内,CO 的法拉第效率超过 90%,在电流密度为 28.6 mA cm 时,-0.81 V 的最大法拉第效率为 99%。我们预计,独特的催化位点将为 CO 还原的高效电催化剂设计带来新的曙光。