Suppr超能文献

RAD 测序估算基于基因组关系矩阵的野生种群遗传力:以狍为例的研究。

RAD-sequencing for estimating genomic relatedness matrix-based heritability in the wild: A case study in roe deer.

机构信息

CEFS, INRA, Université de Toulouse, Castanet-Tolosan, Cedex, France.

Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France.

出版信息

Mol Ecol Resour. 2019 Sep;19(5):1205-1217. doi: 10.1111/1755-0998.13031. Epub 2019 Jun 12.

Abstract

Estimating the evolutionary potential of quantitative traits and reliably predicting responses to selection in wild populations are important challenges in evolutionary biology. The genomic revolution has opened up opportunities for measuring relatedness among individuals with precision, enabling pedigree-free estimation of trait heritabilities in wild populations. However, until now, most quantitative genetic studies based on a genomic relatedness matrix (GRM) have focused on long-term monitored populations for which traditional pedigrees were also available, and have often had access to knowledge of genome sequence and variability. Here, we investigated the potential of RAD-sequencing for estimating heritability in a free-ranging roe deer (Capreolous capreolus) population for which no prior genomic resources were available. We propose a step-by-step analytical framework to optimize the quality and quantity of the genomic data and explore the impact of the single nucleotide polymorphism (SNP) calling and filtering processes on the GRM structure and GRM-based heritability estimates. As expected, our results show that sequence coverage strongly affects the number of recovered loci, the genotyping error rate and the amount of missing data. Ultimately, this had little effect on heritability estimates and their standard errors, provided that the GRM was built from a minimum number of loci (above 7,000). Genomic relatedness matrix-based heritability estimates thus appear robust to a moderate level of genotyping errors in the SNP data set. We also showed that quality filters, such as the removal of low-frequency variants, affect the relatedness structure of the GRM, generating lower h estimates. Our work illustrates the huge potential of RAD-sequencing for estimating GRM-based heritability in virtually any natural population.

摘要

估计数量性状的进化潜力并可靠地预测野生种群对选择的反应是进化生物学中的重要挑战。基因组革命为精确测量个体间的亲缘关系提供了机会,使在野生种群中无系谱估计性状遗传力成为可能。然而,到目前为止,大多数基于基因组亲缘关系矩阵(GRM)的数量遗传研究都集中在长期监测的种群上,这些种群也有传统的系谱,并且通常可以了解基因组序列和变异性。在这里,我们研究了 RAD 测序在无系谱的狍鹿(Capreolous capreolus)种群中估计遗传力的潜力,该种群没有可用的先验基因组资源。我们提出了一个逐步分析框架,以优化基因组数据的质量和数量,并探讨 SNP 调用和过滤过程对 GRM 结构和基于 GRM 的遗传力估计的影响。正如预期的那样,我们的结果表明,序列覆盖率强烈影响回收的标记数量、基因分型错误率和缺失数据量。最终,只要 GRM 是从最小数量的标记(超过 7000 个)构建的,这对遗传力估计及其标准误差几乎没有影响。基于 GRM 的遗传力估计因此似乎对 SNP 数据集中等水平的基因分型错误具有鲁棒性。我们还表明,质量过滤器,如去除低频变异,会影响 GRM 的亲缘关系结构,从而产生较低的 h 估计值。我们的工作说明了 RAD 测序在几乎任何自然种群中估计基于 GRM 的遗传力的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验