Suppr超能文献

基于神经网络的带滚动运动和输入死区的欠驱动船载起重机的自适应抗摆控制。

Neural Network-Based Adaptive Antiswing Control of an Underactuated Ship-Mounted Crane With Roll Motions and Input Dead Zones.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Mar;31(3):901-914. doi: 10.1109/TNNLS.2019.2910580. Epub 2019 May 6.

Abstract

As a type of indispensable oceanic transportation tools, ship-mounted crane systems are widely employed to transport cargoes and containers on vessels due to their extraordinary flexibility. However, various working requirements and the oceanic environment may cause some uncertain and unfavorable factors for ship-mounted crane control. In particular, to accomplish different control tasks, some plant parameters (e.g., boom lengths, payload masses, and so on) frequently change; hence, most existing model-based controllers cannot ensure satisfactory control performance any longer. For example, inaccurate gravity compensation may result in positioning errors. Additionally, due to ship roll motions caused by sea waves, residual payload swing generally exists, which may result in safety risks in practice. To solve the above-mentioned issues, this paper designs a neural network-based adaptive control method that can provide effective control for both actuated and unactuated state variables based on the original nonlinear ship-mounted crane dynamics without any linearizing operations. In particular, the proposed update law availably compensates parameter/structure uncertainties for ship-mounted crane systems. Based on a 2-D sliding surface, the boom and rope can arrive at their preset positions in finite time, and the payload swing can be completely suppressed. Furthermore, the problem of nonlinear input dead zones is also taken into account. The stability of the equilibrium point of all state variables in ship-mounted crane systems is theoretically proven by a rigorous Lyapunov-based analysis. The hardware experimental results verify the practicability and robustness of the presented control approach.

摘要

作为一种不可或缺的海洋运输工具,船用起重机系统由于其非凡的灵活性,广泛应用于船舶上运输货物和集装箱。然而,各种工作要求和海洋环境可能会给船用起重机控制带来一些不确定和不利的因素。特别是,为了完成不同的控制任务,一些植物参数(例如臂长、负载质量等)经常会发生变化;因此,大多数现有的基于模型的控制器不再能够保证令人满意的控制性能。例如,不准确的重力补偿可能会导致定位误差。此外,由于海浪引起的船舶横摇运动,残余的负载摆动通常存在,这在实际中可能会带来安全风险。为了解决上述问题,本文设计了一种基于神经网络的自适应控制方法,该方法可以在不进行任何线性化操作的情况下,基于原始非线性船用起重机动力学,为驱动和非驱动状态变量提供有效的控制。特别是,所提出的更新律有效地补偿了船用起重机系统的参数/结构不确定性。基于二维滑动面,臂和绳索可以在有限的时间内到达预设位置,并且可以完全抑制负载摆动。此外,还考虑了非线性输入死区的问题。通过严格的基于 Lyapunov 的分析,理论上证明了船用起重机系统中所有状态变量平衡点的稳定性。硬件实验结果验证了所提出的控制方法的实用性和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验