Suppr超能文献

用于上肢康复机器人的缆索驱动旋转串联弹性执行器的建模与控制

Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.

作者信息

Zhang Qiang, Sun Dingyang, Qian Wei, Xiao Xiaohui, Guo Zhao

机构信息

School of Power and Mechanical Engineering, Wuhan University, Wuhan, China.

UNC/NCSU Joint Department of Biomedical Engineering, NC State University, Raleigh, NC, United States.

出版信息

Front Neurorobot. 2020 Feb 25;14:13. doi: 10.3389/fnbot.2020.00013. eCollection 2020.

Abstract

This paper focuses on the design, modeling, and control of a novel remote actuation, including a compact rotary series elastic actuator (SEA) and Bowden cable. This kind of remote actuation is used for an upper limb rehabilitation robot (ULRR) with four powered degrees of freedom (DOFs). The SEA mainly consists of a DC motor with planetary gearheads, inner/outer sleeves, and eight linearly translational springs. The key innovations include (1) an encoder for direct spring displacement measurement, which can be used to calculate the output torque of SEA equivalently, (2) the embedded springs can absorb the negative impact of backlash on SEA control performance, (3) and the Bowden cable enables long-distance actuation and reduces the bulky structure on the robotic joint. In modeling of this actuation, the SEA's stiffness coefficient, the dynamics of the SEA, and the force transmission of the Bowden cable are considered for computing the inputs on each powered joint of the robot. Then, both torque and impedance controllers consisting of proportional-derivative (PD) feedback, disturbance observer (DOB), and feedforward compensation terms are developed. Simulation and experimental results verify the performance of these controllers. The preliminary results show that this new kind of actuation can not only implement stable and friendly actuation over a long distance but also be customized to meet the requirements of other robotic system design.

摘要

本文重点关注一种新型远程驱动装置的设计、建模与控制,该装置包括一个紧凑型旋转串联弹性驱动器(SEA)和鲍登电缆。这种远程驱动装置用于具有四个动力自由度(DOF)的上肢康复机器人(ULRR)。SEA主要由一个带行星齿轮箱的直流电机、内/外套筒以及八个线性平移弹簧组成。关键创新点包括:(1)用于直接测量弹簧位移的编码器,可等效用于计算SEA的输出扭矩;(2)嵌入式弹簧可吸收齿隙对SEA控制性能的负面影响;(3)鲍登电缆实现了长距离驱动,并减少了机器人关节上的庞大结构。在对这种驱动装置进行建模时,考虑了SEA的刚度系数、SEA的动力学以及鲍登电缆的力传递,以计算机器人每个动力关节的输入。然后,开发了由比例 - 微分(PD)反馈、干扰观测器(DOB)和前馈补偿项组成的扭矩和阻抗控制器。仿真和实验结果验证了这些控制器的性能。初步结果表明,这种新型驱动装置不仅能够在长距离上实现稳定且友好的驱动,还能够进行定制以满足其他机器人系统设计的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b51/7052376/ff1e339faa10/fnbot-14-00013-g0001.jpg

相似文献

1
Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
Front Neurorobot. 2020 Feb 25;14:13. doi: 10.3389/fnbot.2020.00013. eCollection 2020.
3
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Technol Health Care. 2015;24 Suppl 1:S113-22. doi: 10.3233/THC-151058.
4
Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:567-572. doi: 10.1109/ICORR.2017.8009308.
5
Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton.
Wearable Technol. 2023 Oct 16;4:e25. doi: 10.1017/wtc.2023.20. eCollection 2023.
6
7
A novel compact compliant actuator design for rehabilitation robots.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650478. doi: 10.1109/ICORR.2013.6650478.
8
An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
IEEE Trans Robot. 2019 Dec;35(6):1464-1474. doi: 10.1109/TRO.2019.2930915. Epub 2019 Aug 21.
9
The SE-AssessWrist for robot-aided assessment of wrist stiffness and range of motion: Development and experimental validation.
J Rehabil Assist Technol Eng. 2021 Apr 14;8:2055668320985774. doi: 10.1177/2055668320985774. eCollection 2021 Jan-Dec.
10
A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
Front Neurorobot. 2021 Apr 8;15:664062. doi: 10.3389/fnbot.2021.664062. eCollection 2021.

引用本文的文献

1
Biomimetic Design and Validation of an Adaptive Cable-Driven Elbow Exoskeleton Inspired by the Shrimp Shell.
Biomimetics (Basel). 2025 Apr 28;10(5):271. doi: 10.3390/biomimetics10050271.
2
Sensorless model-based tension control for a cable-driven exosuit.
Wearable Technol. 2024 Dec 10;5:e22. doi: 10.1017/wtc.2024.21. eCollection 2024.
3
Neural network aided flexible joint optimization with design of experiment method for nuclear power plant inspection robot.
Front Neurorobot. 2023 Feb 8;17:1049922. doi: 10.3389/fnbot.2023.1049922. eCollection 2023.
4
QPSO-MPC based tracking algorithm for cable-driven continuum robots.
Front Neurorobot. 2022 Oct 14;16:1014163. doi: 10.3389/fnbot.2022.1014163. eCollection 2022.
6
Autonomous Exercise Generator for Upper Extremity Rehabilitation: A Fuzzy-Logic-Based Approach.
Micromachines (Basel). 2022 May 28;13(6):842. doi: 10.3390/mi13060842.
7
Design and Experimental Characterization of L-CADEL v2, an Assistive Device for Elbow Motion.
Sensors (Basel). 2021 Jul 29;21(15):5149. doi: 10.3390/s21155149.

本文引用的文献

1
Prediction of Ankle Dorsiflexion Moment by Combined Ultrasound Sonography and Electromyography.
IEEE Trans Neural Syst Rehabil Eng. 2020 Jan;28(1):318-327. doi: 10.1109/TNSRE.2019.2953588. Epub 2019 Nov 14.
2
Ankle Dorsiflexion Strength Monitoring by Combining Sonomyography and Electromyography.
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:240-245. doi: 10.1109/ICORR.2019.8779530.
3
Neural Network-Based Adaptive Antiswing Control of an Underactuated Ship-Mounted Crane With Roll Motions and Input Dead Zones.
IEEE Trans Neural Netw Learn Syst. 2020 Mar;31(3):901-914. doi: 10.1109/TNNLS.2019.2910580. Epub 2019 May 6.
4
The Passive Series Stiffness That Optimizes Torque Tracking for a Lower-Limb Exoskeleton in Human Walking.
Front Neurorobot. 2017 Dec 20;11:68. doi: 10.3389/fnbot.2017.00068. eCollection 2017.
5
Impedance Control for Robotic Rehabilitation: A Robust Markovian Approach.
Front Neurorobot. 2017 Aug 24;11:43. doi: 10.3389/fnbot.2017.00043. eCollection 2017.
6
Design and control of the MINDWALKER exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):277-86. doi: 10.1109/TNSRE.2014.2365697. Epub 2014 Oct 30.
7
A novel compact compliant actuator design for rehabilitation robots.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650478. doi: 10.1109/ICORR.2013.6650478.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验