Suppr超能文献

一种适用于原位修复硝酸盐污染地下水的三室生物电化学系统及其反应机制。

A three chamber bioelectrochemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms.

机构信息

School of Environment, Tsinghua University, Beijing, 10084, China.

School of Environment, Tsinghua University, Beijing, 10084, China.

出版信息

Water Res. 2019 Jul 1;158:401-410. doi: 10.1016/j.watres.2019.04.047. Epub 2019 Apr 26.

Abstract

A novel laboratory experiment of three chamber bioelectrochemical (surface water-sediment-groundwater, SSG) system was established in this study, which combined a sediment microbial fuel cell (SMFC) reactor and biofilm electrode reactor (BER) and was self-driven. Simulated groundwater was firstly used to explore the reaction mechanisms of this system. The simulated groundwater conditions were static and the surface water and the groundwater systems were isolated. The results showed that the SMFC continuously supplied a stable voltage of 622 mV ± 20 mV, driving the BER and the related nitrate removal process. Compared to the control systems, the SSG system had higher nitrate removal with a denitrification rate of 3.87 mg N/(L·h). In addition, the sediment organic matter in the SMFC reactor decreased by 66.2%. Based on the electrochemical analysis and microbial community analysis, the SMFC reactor and BER worked synergistically to enhance the performance of both reactors in this system. The presence of microorganisms accelerated the electron transfer efficiency throughout the system, and the microcurrent helped a more fixed community structure to develop and stimulated the growth of denitrifying bacteria. The dominant genera detected in the mature biofilm samples were all microorganisms common in soil and groundwater, indicating that this system may be environmentally friendly. The nitrate removal efficiency for actual groundwater was higher than that for the simulated groundwater, indicating that the elements in the actual groundwater promote the nitrate removal efficiency. These results indicate that the SSG system has the potential for in-situ nitrate bioremediation, with minimal maintenance and health risk.

摘要

本研究建立了一个新型实验室三腔生物电化学(地表水-沉积物-地下水,SSG)系统,它结合了沉积物微生物燃料电池(SMFC)反应器和生物膜电极反应器(BER),并具有自驱动能力。本研究首先使用模拟地下水来探索该系统的反应机制。模拟地下水条件为静态,地表水和地下水系统相互隔离。结果表明,SMFC 持续提供稳定的 622 mV ± 20 mV 电压,驱动 BER 和相关的硝酸盐去除过程。与对照系统相比,SSG 系统具有更高的硝酸盐去除率,达到 3.87 mg N/(L·h)。此外,SMFC 反应器中的沉积物有机物减少了 66.2%。基于电化学分析和微生物群落分析,SMFC 反应器和 BER 协同工作,增强了该系统中两个反应器的性能。微生物的存在加速了整个系统的电子传递效率,微电流有助于形成更固定的群落结构,并刺激反硝化细菌的生长。成熟生物膜样本中检测到的优势属都是土壤和地下水中常见的微生物,表明该系统可能具有环境友好性。实际地下水的硝酸盐去除效率高于模拟地下水,表明实际地下水中的元素促进了硝酸盐的去除效率。这些结果表明,SSG 系统具有原位硝酸盐生物修复的潜力,维护和健康风险最小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验