评估增强现实抬头显示器对汽车驾驶员的分心潜力。

Assessing Distraction Potential of Augmented Reality Head-Up Displays for Vehicle Drivers.

机构信息

Virginia Tech Transportation Institute, Blacksburg, USA.

Virginia Tech, Blacksburg, USA.

出版信息

Hum Factors. 2022 Aug;64(5):852-865. doi: 10.1177/0018720819844845. Epub 2019 May 7.

Abstract

OBJECTIVE

To develop a framework for quantifying the visual and cognitive distraction potential of augmented reality (AR) head-up displays (HUDs).

BACKGROUND

AR HUDs promise to be less distractive than traditional in-vehicle displays because they project information onto the driver's forward-looking view of the road. However, AR graphics may direct the driver's attention away from critical road elements. Moreover, current in-vehicle device assessment methods, which are based on eyes-off-road time measures, cannot capture this unique challenge.

METHOD

This article proposes a new method for the assessment of AR HUDs by measuring driver gaze behavior, situation awareness, confidence, and workload. An experimental user study ( = 24) was conducted in a driving simulator to apply the proposed method for the assessment of two AR pedestrian collision warning (PCW) design alternatives.

RESULTS

Only one of the two tested AR interfaces improved driver awareness of pedestrians without visually and cognitively distracting drivers from other road elements that were not augmented by the display but still critical for safe driving.

CONCLUSION

Our initial human-subject experiment demonstrated the potential of the proposed method in quantifying both positive and negative consequences of AR HUDs on driver cognitive processes. More importantly, the study suggests that AR interfaces can be informative or distractive depending on the perceptual forms of graphical elements presented on the displays.

APPLICATION

The proposed methods can be applied by designers of in-vehicle AR HUD interfaces and be leveraged by designers of AR user interfaces in general.

摘要

目的

开发一种用于量化增强现实(AR)平视显示器(HUD)的视觉和认知干扰潜力的框架。

背景

AR HUD 有望比传统的车内显示器干扰更小,因为它们将信息投射到驾驶员对道路的向前视野中。然而,AR 图形可能会将驾驶员的注意力从关键的道路元素上转移开。此外,当前基于眼睛离开道路时间测量的车内设备评估方法无法捕捉到这一独特的挑战。

方法

本文提出了一种通过测量驾驶员注视行为、情境意识、信心和工作量来评估 AR HUD 的新方法。在驾驶模拟器中进行了一项实验性用户研究(n = 24),以应用所提出的方法评估两种增强现实行人碰撞警告(PCW)设计方案。

结果

两个测试的 AR 界面中只有一个在不分散驾驶员对未被显示增强的其他道路元素的视觉和认知注意力的情况下,提高了驾驶员对行人的意识,而这些元素对于安全驾驶仍然至关重要。

结论

我们的初步人体实验表明,该方法在量化 AR HUD 对驾驶员认知过程的积极和消极影响方面具有潜力。更重要的是,该研究表明,AR 界面可以根据显示上呈现的图形元素的感知形式是信息性的还是分散注意力的。

应用

所提出的方法可以由车内 AR HUD 界面的设计师应用,并可由一般的 AR 用户界面设计师利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索