Norkus Ričardas, Aleksiejūnas Ramūnas, Kadys Arūnas, Kolenda Marek, Tamulaitis Gintautas, Krotkus Arūnas
Center for Physical Sciences and Technology, Saulėtekis av. 3, LT-10257, Vilnius, Lithuania.
Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekis av. 3, LT-10257, Vilnius, Lithuania.
Sci Rep. 2019 May 8;9(1):7077. doi: 10.1038/s41598-019-43642-4.
Spectral dependence of terahertz emission is a sensitive tool to analyze the structure of conduction band of semiconductors. In this work, we investigate the excitation spectra of THz pulses emitted from MOCVD-grown InN and InGaN epitaxial layers with indium content of 16%, 68%, and 80%. In InN and indium-rich InGaN layers we observe a gradual saturation of THz emission efficiency with increasing photon energy. This is in stark contrast to other III-V semiconductors where an abrupt drop of THz efficiency occurs at certain photon energy due to inter-valley electron scattering. From these results, we set a lower limit of the intervalley energy separation in the conduction band of InN as 2.4 eV. In terms of THz emission efficiency, the largest optical-to-THz energy conversion rate was obtained in 75 nm thick InGaN layer, while lower THz emission efficiency was observed from InN and indium-rich InGaN layers due to the screening of built-in field by a high-density electron gas in these materials.
太赫兹发射的光谱依赖性是分析半导体导带结构的一种灵敏工具。在这项工作中,我们研究了由金属有机化学气相沉积(MOCVD)生长的铟含量分别为16%、68%和80%的氮化铟(InN)和氮化铟镓(InGaN)外延层发射的太赫兹脉冲的激发光谱。在InN和富铟InGaN层中,我们观察到随着光子能量增加,太赫兹发射效率逐渐饱和。这与其他III-V族半导体形成鲜明对比,在其他III-V族半导体中,由于谷间电子散射,太赫兹效率在特定光子能量处会突然下降。根据这些结果,我们确定InN导带中谷间能量间隔的下限为2.4电子伏特。就太赫兹发射效率而言,在75纳米厚的InGaN层中获得了最大的光到太赫兹能量转换率,而在InN和富铟InGaN层中观察到较低的太赫兹发射效率,这是由于这些材料中高密度电子气对内建电场的屏蔽作用。