Wang Pengzhi, Liang Jing, Shi Linda Z, Wang Yi, Zhang Ping, Ouyang Mingxing, Preece Daryl, Peng Qin, Shao Lunan, Fan Jason, Sun Jie, Li Shawn S, Berns Michael W, Zhao Huimin, Wang Yingxiao
Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States.
Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States.
ACS Photonics. 2018 Sep 19;5(9):3565-3574. doi: 10.1021/acsphotonics.8b00383. Epub 2018 Aug 20.
During cell-to-cell communications, the interplay between physical and biochemical cues is essential for informational exchange and functional coordination, especially in multicellular organisms. However, it remains a challenge to visualize intercellular signaling dynamics in single live cells. Here, we report a photonic approach, based on laser microscissors and Förster resonance energy transfer (FRET) microscopy, to study intercellular signaling transmission. First, using our high-throughput screening platform, we developed a highly sensitive FRET-based biosensor (SCAGE) for Src kinase, a key regulator of intercellular interactions and signaling cascades. Notably, SCAGE showed a more than 40-fold sensitivity enhancement than the original biosensor in live mammalian cells. Next, upon local severance of physical intercellular connections by femtosecond laser pulses, SCAGE enabled the visualization of a transient Src activation across neighboring cells. Lastly, we found that this observed transient Src activation following the loss of cell-cell contacts depends on the passive structural support of cytoskeleton but not on the active actomyosin contractility. Hence, by precisely introducing local physical perturbations and directly visualizing spatiotemporal transmission of ensuing signaling events, our integrated approach could be broadly applied to mimic and investigate the wounding process at single-cell resolutions. This integrated approach with highly sensitive FRET-based biosensors provides a unique system to advance our in-depth understanding of molecular mechanisms underlying the physical-biochemical basis of intercellular coupling and wounding processes.
在细胞间通讯过程中,物理和生化信号之间的相互作用对于信息交换和功能协调至关重要,尤其是在多细胞生物中。然而,在单个活细胞中可视化细胞间信号转导动力学仍然是一项挑战。在此,我们报告一种基于激光微剪刀和荧光共振能量转移(FRET)显微镜的光子学方法,用于研究细胞间信号传递。首先,利用我们的高通量筛选平台,我们开发了一种基于FRET的高灵敏度Src激酶生物传感器(SCAGE),Src激酶是细胞间相互作用和信号级联反应的关键调节因子。值得注意的是,在活的哺乳动物细胞中,SCAGE的灵敏度比原始生物传感器提高了40多倍。接下来,通过飞秒激光脉冲局部切断细胞间的物理连接后,SCAGE能够可视化相邻细胞间短暂的Src激活。最后,我们发现这种在细胞-细胞接触丧失后观察到的短暂Src激活依赖于细胞骨架的被动结构支持,而不依赖于主动的肌动球蛋白收缩性。因此,通过精确引入局部物理扰动并直接可视化随后信号事件的时空传递,我们的综合方法可广泛应用于在单细胞分辨率下模拟和研究损伤过程。这种结合了高灵敏度基于FRET的生物传感器的综合方法提供了一个独特的系统,以促进我们对细胞间偶联和损伤过程的物理-生化基础的分子机制的深入理解。