Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
Laboratory for Aero and Hydrodynamics, Delft University of Technology, Mekelweg 2, 2628 LD, Delft, The Netherlands.
Biomech Model Mechanobiol. 2019 Dec;18(6):1577-1590. doi: 10.1007/s10237-019-01160-2. Epub 2019 May 8.
The vestibular system in the inner ear senses angular head manoeuvres by endolymph fluid which deforms a gelatinous sensory structure (the cupula). We constructed computer models that include both the endolymph flow (using CFD modelling), the cupula deformation (using FEM modelling), and the interaction between both (using fluid-structure interaction modelling). In the wide utricle, we observe an endolymph vortex. In the initial time steps, both the displacement of the cupula and its restorative forces are still small. As a result, the endolymph vortex causes the cupula to deform asymmetrically in an S-shape. The asymmetric deflection increases the cupula strain near the crista and, as a result, enhances the sensitivity of the vestibular system. Throughout the head manoeuvre, the maximal cupula strain is located at the centre of the crista. The hair cells at the crista centre supply irregularly spiking afferents, which are more sensitive than the afferents from the periphery. Hence, the location of the maximal strain at the crista may also increase the sensitivity of the semicircular canal, but this remains to be tested. The cupula overshoots its relaxed position in a simulation of the Dix-Hallpike head manoeuvre (3 s in total). A much faster head manoeuvre of 0.222 s showed to be too short to cause substantial cupula overshoot, because the cupula time scale of both models (estimated to be 3.3 s) is an order of magnitude larger than the duration of this manoeuvre.
内耳的前庭系统通过内淋巴液感知头部的角运动,内淋巴液会使凝胶状的感觉结构(帽状突)变形。我们构建了包含内淋巴液流动(使用 CFD 建模)、帽状突变形(使用 FEM 建模)以及两者之间相互作用(使用流固耦合建模)的计算机模型。在宽大的椭圆囊中,我们观察到内淋巴液的涡旋。在初始的时间步长内,帽状突的位移及其恢复力仍然很小。因此,内淋巴液的涡旋导致帽状突呈 S 形不对称变形。不对称的偏转会增加嵴顶附近的帽状突应变,从而提高前庭系统的敏感性。在整个头部运动过程中,帽状突的最大应变位于嵴顶的中心。嵴顶中心的毛细胞提供不规则的尖峰传入冲动,比来自外周的传入冲动更敏感。因此,嵴顶处的最大应变位置也可能增加半规管的敏感性,但这仍有待验证。在 Dix-Hallpike 头位试验的模拟中(总时长 3 秒),帽状突会超过其松弛位置。一个更快的头位运动(时长 0.222 秒)被证明太快,无法引起显著的帽状突超调,因为两个模型的帽状突时间尺度(估计为 3.3 秒)比这个运动的时长大一个数量级。