State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China.
Chemistry. 2019 Aug 6;25(44):10350-10358. doi: 10.1002/chem.201901480. Epub 2019 Jun 11.
The establishment of new enzymatic function in an existing scaffold is a great challenge for protein engineers. In previous work, a highly efficient artificial selenoenzyme with controllable activity was constructed, based on a Ca -responsive recoverin (Rn) protein. In this study, a design strategy combining docking, molecular dynamics, and MM-PBSA is presented, to predict the catalytically active site of glutathione peroxidase (GPx) on the allosteric domain of Rn. The energy contributions of the binding hot spot residues are evaluated further by energy decomposition analysis to determine the detailed substrate recognition mechanism of Rn, which provides clear guidance for artificial enzyme design for improved substrate binding (Michaelis-Menten constant, K ).
在现有支架中建立新的酶功能对蛋白质工程师来说是一个巨大的挑战。在以前的工作中,基于钙反应恢复蛋白(Rn)构建了一种具有可控活性的高效人工硒酶。在本研究中,提出了一种结合对接、分子动力学和 MM-PBSA 的设计策略,以预测 Rn 变构域上谷胱甘肽过氧化物酶(GPx)的催化活性位点。通过能量分解分析进一步评估结合热点残基的能量贡献,以确定 Rn 的详细底物识别机制,为提高底物结合的人工酶设计提供明确指导(米氏常数,K)。