Analytical Sciences, Merck & Co., Inc, West Point, PA, 19486, USA; Drexel University, Department of Chemistry, Philadelphia, PA, 19104, USA.
Drexel University, Department of Chemistry, Philadelphia, PA, 19104, USA.
J Chromatogr A. 2019 Sep 13;1601:145-154. doi: 10.1016/j.chroma.2019.04.061. Epub 2019 Apr 27.
RNA interference offers a novel approach for the development of new therapeutics for targets that are otherwise "undruggable" using traditional modalities. The safety and efficacy of siRNA-based therapy mainly rely on lipid or polymer-based nanocarriers to overcome inherent barriers to a systemic delivery of siRNA. A multicomponent lipid nanoparticle (LNP) system is a promising delivery platform, typically consisting of a cationic lipid, phospholipid, PEG-containing short-chain lipid, and cholesterol. Characterization and chemical analysis of the LNP formulation is important to assure drug product stability, a key consideration for chemistry, manufacturing and control strategy. Here we report an ion-pair reversed phase UHPLC method capable of simultaneously separating both siRNA and functional lipids in LNPs with a minimal retention gap for two classes of biologically essential yet chemically distinct molecules. Key chromatographic parameters critical to the separation are discussed, including the structure of the ion-pair agent, stationary phase chemistry, column temperature and an organic additive. The results showed that the retention time of siRNA is tunable by using various ion-pair reagents. The retention factor of the siRNA exhibited a first order relationship with the number of carbons in the alkyl chain of the ion-pair reagents. In contrast, the type of ion-pair reagent has no significant impact on the separation of phospholipids. Separations using a BEH phenyl column and dibutylammonium acetate as the ion-pair reagent showed satisfactory selectivity for a range of double-stranded siRNAs and phospholipids, key components for lipid nanoparticle formulations. Furthermore, the method was applied to the separation of an experimental LNP formulation, demonstrating good selectivity for siRNA, functional lipids and their potential degradation products.
RNA 干扰为开发新的治疗方法提供了一种新方法,针对使用传统方法“不可成药”的靶点。基于 siRNA 的治疗的安全性和有效性主要依赖于基于脂质或聚合物的纳米载体来克服 siRNA 全身递送的固有障碍。多组分脂质纳米颗粒 (LNP) 系统是一种很有前途的递药平台,通常由阳离子脂质、磷脂、含 PEG 的短链脂质和胆固醇组成。LNP 配方的特性和化学分析对于确保药物产品的稳定性很重要,这是化学、制造和控制策略的关键考虑因素。在这里,我们报告了一种离子对反相 UHPLC 方法,该方法能够同时分离 LNP 中的 siRNA 和功能性脂质,对于两类具有生物学重要性但化学性质不同的分子,保留间隙最小。讨论了对分离至关重要的关键色谱参数,包括离子对试剂的结构、固定相化学、柱温以及有机添加剂。结果表明,使用各种离子对试剂可以调节 siRNA 的保留时间。siRNA 的保留因子与离子对试剂的烷基链中的碳原子数呈一级关系。相比之下,离子对试剂的类型对磷脂的分离没有显著影响。使用 BEH 苯基柱和二丁基乙酸铵作为离子对试剂进行分离,对一系列双链 siRNA 和磷脂表现出良好的选择性,磷脂是脂质纳米颗粒配方的关键成分。此外,该方法还应用于实验 LNP 配方的分离,对 siRNA、功能性脂质及其潜在降解产物表现出良好的选择性。