Krueger Rachel A, Blanquart Guillaume
Department of Chemistry, The California Institute of Technology, Pasadena, California 91125, USA.
Department of Mechanical and Civil Engineering, The California Institute of Technology, Pasadena, California 91125, USA.
Phys Chem Chem Phys. 2019 May 22;21(20):10325-10335. doi: 10.1039/c9cp02027f.
PAH dimerization has been widely posited to play an important, even rate-determining role in soot nucleation, despite scanty experimental evidence of the existence of PAH dimers in flames. Laser-induced fluorescence (LIF) offers a promising in situ method of identifying PAH dimers, if dimer fluorescence can be distinguished from the fluorescence of the constituent monomers and other species present. Predicting transition energies for excited dimers (excimers) and excited complexes (exciplexes) represents a significant challenge for theory. Nonempirically tuned LC-BLYP functionals have been used to compute excited-state geometries and emission energies for a database of 81 inter- and intramolecular PAH excimers and exciplexes. Exciplex emission energies depend sensitively on the topology of the PAHs involved, but a linear relationship between the mean monomer bandgap and the computed exciplex emission means that dimer electronic properties can be predicted based on the properties of the constituent monomers. The range of fluorescence energies calculated for structures containing small to moderately-sized PAHs indicates that either noncovalent or aliphatically-linked complexes could generate the visible-range fluorescence energies observed in LIF experiments.
尽管在火焰中多环芳烃(PAH)二聚体存在的实验证据很少,但PAH二聚化在烟灰成核过程中被广泛认为起着重要作用,甚至是速率决定作用。如果二聚体荧光能够与组成单体及其他存在物种的荧光区分开来,激光诱导荧光(LIF)提供了一种很有前景的原位识别PAH二聚体的方法。预测激发二聚体(准分子)和激发复合物(激基复合物)的跃迁能量对理论而言是一项重大挑战。非经验性调整的LC-BLYP泛函已被用于计算81种分子间和分子内PAH准分子和激基复合物数据库的激发态几何结构和发射能量。激基复合物发射能量敏感地取决于所涉及PAH的拓扑结构,但平均单体带隙与计算出的激基复合物发射之间的线性关系意味着二聚体电子性质可以基于组成单体的性质来预测。对于含有小到中等大小PAH的结构计算出的荧光能量范围表明,非共价或脂肪族连接的复合物可能产生LIF实验中观察到的可见光范围荧光能量。