Gaulding E Ashley, Hao Ji, Kang Hyun Suk, Miller Elisa M, Habisreutinger Severin N, Zhao Qian, Hazarika Abhijit, Sercel Peter C, Luther Joseph M, Blackburn Jeffrey L
National Renewable Energy Laboratory, Golden, CO, 80401, USA.
College of Chemistry, Nankai University, Tianjin, 300071, China.
Adv Mater. 2019 Jul;31(27):e1902250. doi: 10.1002/adma.201902250. Epub 2019 May 10.
Doping of semiconductors enables fine control over the excess charge carriers, and thus the overall electronic properties, crucial to many technologies. Controlled doping in lead-halide perovskite semiconductors has thus far proven to be difficult. However, lower dimensional perovskites such as nanocrystals, with their high surface-area-to-volume ratio, are particularly well-suited for doping via ground-state molecular charge transfer. Here, the tunability of the electronic properties of perovskite nanocrystal arrays is detailed using physically adsorbed molecular dopants. Incorporation of the dopant molecules into electronically coupled CsPbI nanocrystal arrays is confirmed via infrared and photoelectron spectroscopies. Untreated CsPbI nanocrystal films are found to be slightly p-type with increasing conductivity achieved by incorporating the electron-accepting dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F TCNQ) and decreasing conductivity for the electron-donating dopant benzyl viologen. Time-resolved spectroscopic measurements reveal the time scales of Auger-mediated recombination in the presence of excess electrons or holes. Microwave conductance and field-effect transistor measurements demonstrate that both the local and long-range hole mobility are improved by F TCNQ doping of the nanocrystal arrays. The improved hole mobility in photoexcited p-type arrays leads to a pronounced enhancement in phototransistors.
半导体的掺杂能够对过量电荷载流子进行精细控制,进而控制整体电子特性,这对许多技术而言至关重要。然而,迄今为止,在铅卤化物钙钛矿半导体中进行可控掺杂已被证明颇具难度。不过,诸如纳米晶体这类具有高表面积与体积比的低维钙钛矿,特别适合通过基态分子电荷转移进行掺杂。在此,利用物理吸附的分子掺杂剂详细阐述了钙钛矿纳米晶体阵列电子特性的可调谐性。通过红外光谱和光电子能谱证实了掺杂剂分子已掺入电子耦合的CsPbI纳米晶体阵列中。研究发现,未经处理的CsPbI纳米晶体薄膜呈轻微的p型,通过掺入电子受体掺杂剂2,3,5,6 - 四氟 - 7,7,8,8 - 四氰基对苯二醌二甲烷(F TCNQ)可提高其导电性,而对于供电子掺杂剂苄基紫精,则会降低其导电性。时间分辨光谱测量揭示了在存在过量电子或空穴的情况下俄歇介导复合的时间尺度。微波电导和场效应晶体管测量表明,通过对纳米晶体阵列进行F TCNQ掺杂,局部和远程空穴迁移率均得到了提高。光激发p型阵列中空穴迁移率的提高导致光晶体管有显著增强。