Hao Ji, Kim Young-Hoon, Habisreutinger Severin N, Harvey Steven P, Miller Elisa M, Foradori Sean M, Arnold Michael S, Song Zhaoning, Yan Yanfa, Luther Joseph M, Blackburn Jeffrey L
National Renewable Energy Laboratory, Golden, CO 80401, USA.
University of Wisconsin, Madison, WI 53706, USA.
Sci Adv. 2021 Apr 28;7(18). doi: 10.1126/sciadv.abf1959. Print 2021 Apr.
Long-lived photon-stimulated conductance changes in solid-state materials can enable optical memory and brain-inspired neuromorphic information processing. It remains challenging to realize optical switching with low-energy consumption, and new mechanisms and design principles giving rise to persistent photoconductivity (PPC) can help overcome an important technological hurdle. Here, we demonstrate versatile heterojunctions between metal-halide perovskite nanocrystals and semiconducting single-walled carbon nanotubes that enable room-temperature, long-lived (thousands of seconds), writable, and erasable PPC. Optical switching and basic neuromorphic functions can be stimulated at low operating voltages with femto- to pico-joule energies per spiking event, and detailed analysis demonstrates that PPC in this nanoscale interface arises from field-assisted control of ion migration within the nanocrystal array. Contactless optical measurements also suggest these systems as potential candidates for photonic synapses that are stimulated and read in the optical domain. The tunability of PPC shown here holds promise for neuromorphic computing and other technologies that use optical memory.
固态材料中长寿命的光子激发电导变化能够实现光学记忆和受大脑启发的神经形态信息处理。实现低能耗的光开关仍然具有挑战性,而产生持久光电导(PPC)的新机制和设计原理有助于克服一个重要的技术障碍。在此,我们展示了金属卤化物钙钛矿纳米晶体与半导体单壁碳纳米管之间的多功能异质结,该异质结能够实现室温下长寿命(数千秒)、可写且可擦除的PPC。在低工作电压下,每个尖峰事件的能量为飞秒到皮焦耳时,即可激发光开关和基本的神经形态功能,详细分析表明,这种纳米级界面中的PPC源于纳米晶体阵列内离子迁移的场辅助控制。非接触式光学测量还表明,这些系统是在光学领域进行刺激和读取的光子突触的潜在候选者。此处展示的PPC的可调性为神经形态计算和其他使用光学记忆的技术带来了希望。