Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, USA.
Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Chemistry, Boston University, Boston, MA, USA.
Osteoarthritis Cartilage. 2019 Aug;27(8):1219-1228. doi: 10.1016/j.joca.2019.04.015. Epub 2019 May 8.
Cationic agent contrast-enhanced computed tomography (cationic CECT) characterizes articular cartilage ex vivo, however, its capacity to detect post-traumatic injury is unknown. The study objectives were to correlate cationic CECT attenuation with biochemical, mechanical and histological properties of cartilage and morphologic computed tomography (CT) measures of bone, and to determine the ability of cationic CECT to distinguish subtly damaged from normal cartilage in an in vivo equine model.
Mechanical impact injury was initiated in equine femoropatellar joints in vivo to establish subtle cartilage degeneration with site-matched controls. Cationic CECT was performed in vivo (clinical) and postmortem (microCT). Articular cartilage was characterized by glycosaminoglycan (GAG) content, biochemical moduli and histological scores. Bone was characterized by volume density (BV/TV) and trabecular number (Tb.N.), thickness (Tb.Th.) and spacing (Tb.Sp.).
Cationic CECT attenuation (microCT) of cartilage correlated with GAG (r = 0.74, P < 0.0001), compressive modulus (E) (r = 0.79, P < 0.0001) and safranin-O histological score (r = -0.66, P < 0.0001) of cartilage, and correlated with BV/TV (r = 0.37, P = 0.0005), Tb.N. (r = 0.39, P = 0.0003), Tb.Th. (r = 0.28, P = 0.0095) and Tb.Sp. (r = -0.44, P < 0.0001) of bone. Mean [95% CI] cationic CECT attenuation at the impact site (2215 [1987, 2443] Hounsfield Units [HUs]) was lower than site-matched controls (2836 [2490, 3182] HUs, P = 0.036). Clinical cationic CECT attenuation correlated with GAG (r = 0.23, P = 0.049), E (r = 0.26, P = 0.025) and safranin-O histology score (r = -0.32, P = 0.0046).
Cationic CECT (microCT) reflects articular cartilage properties enabling segregation of subtly degenerated from healthy tissue and also reflects bone morphometric properties on CT. Cationic CECT is capable of characterizing articular cartilage in clinical scanners.
阳离子对比增强计算机断层扫描(cationic CECT)可对关节软骨进行离体特征描述,但其对创伤后损伤的检测能力尚不清楚。本研究的目的是将阳离子 CECT 衰减与软骨的生化、力学和组织学特性以及骨的形态计算机断层扫描(CT)测量值相关联,并确定阳离子 CECT 在体内马模型中区分轻微受损软骨与正常软骨的能力。
在体内对马髌股关节进行机械性冲击损伤,以建立具有匹配部位的轻微软骨退变的模型。在体内(临床)和死后(microCT)进行阳离子 CECT。关节软骨的特征在于糖胺聚糖(GAG)含量、生化模量和组织学评分。骨的特征在于体积密度(BV/TV)和骨小梁数量(Tb.N.)、厚度(Tb.Th.)和间距(Tb.Sp.)。
软骨的阳离子 CECT 衰减(microCT)与 GAG(r=0.74,P<0.0001)、压缩模量(E)(r=0.79,P<0.0001)和番红 O 组织学评分(r=-0.66,P<0.0001)相关,与 BV/TV(r=0.37,P=0.0005)、Tb.N.(r=0.39,P=0.0003)、Tb.Th.(r=0.28,P=0.0095)和 Tb.Sp.(r=-0.44,P<0.0001)相关。撞击部位的平均[95%CI]阳离子 CECT 衰减值(2215[1987,2443]Hounsfield 单位[HU])低于匹配部位的对照组(2836[2490,3182]HU,P=0.036)。临床阳离子 CECT 衰减与 GAG(r=0.23,P=0.049)、E(r=0.26,P=0.025)和番红 O 组织学评分(r=-0.32,P=0.0046)相关。
阳离子 CECT(microCT)反映了关节软骨的特性,能够区分退变软骨和健康组织,并且也可以反映 CT 上的骨形态计量学特性。阳离子 CECT 能够在临床扫描仪中对关节软骨进行特征描述。