Suppr超能文献

悬浮肿瘤细胞在切变流中依赖于力学和肌球蛋白的存活/化疗耐药性。

Mechanics and Actomyosin-Dependent Survival/Chemoresistance of Suspended Tumor Cells in Shear Flow.

机构信息

The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Biophys J. 2019 May 21;116(10):1803-1814. doi: 10.1016/j.bpj.2019.04.011. Epub 2019 Apr 19.

Abstract

Tumor cells disseminate to distant organs mainly through blood circulation in which they experience considerable levels of fluid shear stress. However, the effects of hemodynamic shear stress on biophysical properties and functions of circulating tumor cells (CTCs) in suspension are not fully understood. In this study, we found that the majority of suspended breast tumor cells could be eliminated by fluid shear stress, whereas cancer stem cells held survival advantages over conventional cancer cells. Compared to untreated cells, tumor cells surviving shear stress exhibited unique biophysical properties: 1) cell adhesion was significantly retarded, 2) these cells exhibited elongated morphology and enhanced spreading and expressed genes related to epithelial-mesenchymal transition or hybrid phenotype, and 3) surviving tumor cells showed reduced F-actin assembly and stiffness. Importantly, inhibiting actomyosin activity promoted the survival of suspended tumor cells in fluid shear stress, whereas activating actomyosin suppressed cell survival, which might be explained by the up- and downregulation of the antiapoptosis genes. Soft surviving tumor cells held survival advantages in shear flow and higher resistance to chemotherapy. Inhibiting actomyosin activity in untreated cells enhanced chemoresistance, whereas activating actomyosin in surviving tumor cells suppressed this ability. These findings might be associated with the corresponding changes in the genes related to multidrug resistance. In summary, these data demonstrate that hemodynamic shear stress significantly influences biophysical properties and functions of suspended tumor cells. Our study unveils the regulatory roles of actomyosin in the survival and drug resistance of suspended tumor cells in hemodynamic shear flow, which suggest the importance of fluid shear stress and actomyosin activity in tumor metastasis. These findings may reveal a new, to our knowledge, mechanism by which CTCs are able to survive hemodynamic shear stress and chemotherapy and may offer a new potential strategy to target CTCs in shear flow and combat chemoresistance through actomyosin.

摘要

肿瘤细胞主要通过血液循环扩散到远处的器官,在此过程中它们会经历相当水平的流体切应力。然而,血流切应力对悬浮循环肿瘤细胞(CTC)的生物物理特性和功能的影响尚未完全阐明。在这项研究中,我们发现,大多数悬浮的乳腺癌肿瘤细胞可以被流体切应力消除,而癌症干细胞比常规癌细胞具有生存优势。与未处理的细胞相比,在切应力下存活的肿瘤细胞表现出独特的生物物理特性:1)细胞黏附明显延迟,2)这些细胞表现出伸长的形态,并增强了扩散,表达与上皮-间充质转化或混合表型相关的基因,3)存活的肿瘤细胞显示出 F-肌动蛋白组装和刚性降低。重要的是,抑制肌动球蛋白活性促进了悬浮肿瘤细胞在流体切应力下的存活,而激活肌动球蛋白则抑制了细胞存活,这可能是通过抗凋亡基因的上调和下调来解释的。柔软的存活肿瘤细胞在切变流中具有生存优势,并且对化疗的抵抗力更高。在未处理的细胞中抑制肌动球蛋白活性增强了化疗耐药性,而在存活的肿瘤细胞中激活肌动球蛋白则抑制了这种能力。这些发现可能与与多药耐药相关的基因的相应变化有关。总之,这些数据表明,血流切应力显著影响悬浮肿瘤细胞的生物物理特性和功能。我们的研究揭示了肌动球蛋白在血流切应力下悬浮肿瘤细胞的存活和耐药性中的调节作用,这表明流体切应力和肌动球蛋白活性在肿瘤转移中的重要性。这些发现可能揭示了一种新的、据我们所知的机制,即 CTC 能够在血流切应力和化疗中存活,并可能通过肌动球蛋白为靶向切变流中的 CTC 和对抗化疗耐药性提供一种新的潜在策略。

相似文献

引用本文的文献

3
Premetastatic niche mechanics and organotropism in breast cancer.乳腺癌中的前转移生态位机制与器官趋向性
NPJ Biol Phys Mech. 2025;2(1):11. doi: 10.1038/s44341-025-00015-5. Epub 2025 Apr 3.
7
Circulating Tumor Microenvironment in Metastasis.转移中的循环肿瘤微环境
Cancer Res. 2025 Apr 15;85(8):1354-1367. doi: 10.1158/0008-5472.CAN-24-1241.
9
Mechanical signatures in cancer metastasis.癌症转移中的力学特征。
NPJ Biol Phys Mech. 2025;2(1):3. doi: 10.1038/s44341-024-00007-x. Epub 2025 Feb 4.

本文引用的文献

7
Epithelial-mesenchymal plasticity in circulating tumor cells.循环肿瘤细胞中的上皮-间质可塑性
J Mol Med (Berl). 2017 Feb;95(2):133-142. doi: 10.1007/s00109-016-1500-6. Epub 2016 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验