Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030.
Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142.
J Biol Chem. 2019 Jul 12;294(28):10746-10757. doi: 10.1074/jbc.AC119.008378. Epub 2019 May 10.
In eukaryotes, ribosome assembly is a rate-limiting step in ribosomal biogenesis that takes place in a distinctive subnuclear organelle, the nucleolus. How ribosomes get assembled at the nucleolar site by forming initial preribosomal complexes remains poorly characterized. In this study, using several human and murine cell lines, we developed a method for isolation of native mammalian preribosomal complexes by lysing cell nuclei through mild sonication. A sucrose gradient fractionation of the nuclear lysate resolved several ribonucleoprotein (RNP) complexes containing rRNAs and ribosomal proteins. Characterization of the RNP complexes with MS-based protein identification and Northern blotting-based rRNA detection approaches identified two types of preribosomes we named here as intermediate preribosomes (IPRibs) and composed preribosome (CPRib). IPRib complexes comprised large preribosomes (105S to 125S in size) containing the rRNA modification factors and premature rRNAs. We further observed that a distinctive CPRib complex consists of an 85S preribosome assembled with mature rRNAs and a ribosomal biogenesis factor, Ly1 antibody-reactive (LYAR), that does not associate with premature rRNAs and rRNA modification factors. rRNA-labeling experiments uncovered that IPRib assembly precedes CPRib complex formation. We also found that formation of the preribosomal complexes is nutrient-dependent because the abundances of IPRib and CPRib decreased substantially when cells were either deprived of amino acids or exposed to an mTOR kinase inhibitor. These findings indicate that preribosomes form via dynamic and nutrient-dependent processing events and progress from an intermediate to a composed state during ribosome maturation.
在真核生物中,核糖体组装是核糖体生物发生过程中的限速步骤,发生在一个独特的核内细胞器——核仁中。核糖体如何通过形成初始前核糖体复合物在核仁部位组装仍然知之甚少。在这项研究中,我们使用几种人类和鼠类细胞系,开发了一种通过温和超声裂解细胞核来分离天然哺乳动物前核糖体复合物的方法。细胞核裂解物的蔗糖梯度分级分离出了几种含有 rRNA 和核糖体蛋白的核糖核蛋白 (RNP) 复合物。使用基于 MS 的蛋白质鉴定和基于 Northern blot 的 rRNA 检测方法对 RNP 复合物进行表征,鉴定了两种前核糖体,我们将其命名为中间前核糖体 (IPRib) 和组成前核糖体 (CPRib)。IPRib 复合物包含大的前核糖体(大小为 105S 到 125S),其中包含 rRNA 修饰因子和不成熟的 rRNAs。我们进一步观察到,一个独特的 CPRib 复合物由一个组装有成熟 rRNAs 和一个核糖体生物发生因子 Ly1 抗体反应性 (LYAR) 的 85S 前核糖体组成,该因子不与不成熟的 rRNAs 和 rRNA 修饰因子结合。rRNA 标记实验揭示了 IPRib 组装先于 CPRib 复合物的形成。我们还发现,前核糖体复合物的形成是依赖营养的,因为当细胞缺乏氨基酸或暴露于 mTOR 激酶抑制剂时,IPRib 和 CPRib 的丰度会大大降低。这些发现表明,前核糖体通过动态和依赖营养的加工事件形成,并在核糖体成熟过程中从中间状态进展到组成状态。