Suppr超能文献

人类骨骼肌中基因表达、DNA 甲基化、生理特征和遗传变异的综合分析。

Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle.

机构信息

Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892.

European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2019 May 28;116(22):10883-10888. doi: 10.1073/pnas.1814263116. Epub 2019 May 10.

Abstract

We integrate comeasured gene expression and DNA methylation (DNAme) in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants and eight physiological traits: height, waist, weight, waist-hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes. We find hundreds of genes and DNAme sites associated with fasting insulin, waist, and body mass index, as well as thousands of DNAme sites associated with gene expression (eQTM). We find that controlling for heterogeneity in tissue/muscle fiber type reduces the number of physiological trait associations, and that long-range eQTMs (>1 Mb) are reduced when controlling for tissue/muscle fiber type or latent factors. We map genetic regulators (quantitative trait loci; QTLs) of expression (eQTLs) and DNAme (mQTLs). Using Mendelian randomization (MR) and mediation techniques, we leverage these genetic maps to predict 213 causal relationships between expression and DNAme, approximately two-thirds of which predict methylation to causally influence expression. We use MR to integrate FUSION mQTLs, FUSION eQTLs, and GTEx eQTLs for 48 tissues with genetic associations for 534 diseases and quantitative traits. We identify hundreds of genes and thousands of DNAme sites that may drive the reported disease/quantitative trait genetic associations. We identify 300 gene expression MR associations that are present in both FUSION and GTEx skeletal muscle and that show stronger evidence of MR association in skeletal muscle than other tissues, which may partially reflect differences in power across tissues. As one example, we find that increased muscle expression may decrease lean tissue mass.

摘要

我们将来自 FUSION 研究的 265 个人类骨骼肌活检样本中的测量基因表达和 DNA 甲基化(DNAme)与超过 700 万个遗传变异和 8 个生理特征整合在一起:身高、腰围、体重、腰臀比、体重指数、空腹血清胰岛素、空腹血糖和 2 型糖尿病。我们发现了数百个与空腹胰岛素、腰围和体重指数相关的基因和 DNAme 位点,以及数千个与基因表达(eQTM)相关的 DNAme 位点。我们发现,控制组织/肌肉纤维类型的异质性会减少与生理特征相关的数量,并且控制组织/肌肉纤维类型或潜在因素时,长距离 eQTM(>1 Mb)会减少。我们绘制了表达(eQTL)和 DNAme(mQTL)的遗传调控因子(数量性状基因座;QTL)图谱。使用 Mendelian randomization(MR)和中介技术,我们利用这些遗传图谱来预测 213 个表达和 DNAme 之间的因果关系,其中大约三分之二预测甲基化会因果影响表达。我们使用 MR 整合 FUSION mQTLs、FUSION eQTLs 和 GTEx eQTLs,用于 48 种组织,这些组织具有 534 种疾病和定量特征的遗传关联。我们确定了数百个基因和数千个 DNAme 位点,这些基因和 DNAme 位点可能驱动了报告的疾病/定量特征的遗传关联。我们确定了 300 个在 FUSION 和 GTEx 骨骼肌中都存在的基因表达 MR 关联,并且在骨骼肌中比其他组织具有更强的 MR 关联证据,这可能部分反映了组织间的功效差异。例如,我们发现增加肌肉表达可能会减少瘦组织质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aba/6561151/ba52a5fc4194/pnas.1814263116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验