Suppr超能文献

稳健的进化率趋同转变检测方法

Robust Method for Detecting Convergent Shifts in Evolutionary Rates.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA.

Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA.

出版信息

Mol Biol Evol. 2019 Aug 1;36(8):1817-1830. doi: 10.1093/molbev/msz107.

Abstract

Identifying genomic elements underlying phenotypic adaptations is an important problem in evolutionary biology. Comparative analyses learning from convergent evolution of traits are gaining momentum in accurately detecting such elements. We previously developed a method for predicting phenotypic associations of genetic elements by contrasting patterns of sequence evolution in species showing a phenotype with those that do not. Using this method, we successfully demonstrated convergent evolutionary rate shifts in genetic elements associated with two phenotypic adaptations, namely the independent subterranean and marine transitions of terrestrial mammalian lineages. Our original method calculates gene-specific rates of evolution on branches of phylogenetic trees using linear regression. These rates represent the extent of sequence divergence on a branch after removing the expected divergence on the branch due to background factors. The rates calculated using this regression analysis exhibit an important statistical limitation, namely heteroscedasticity. We observe that the rates on branches that are longer on average show higher variance, and describe how this problem adversely affects the confidence with which we can make inferences about rate shifts. Using a combination of data transformation and weighted regression, we have developed an updated method that corrects this heteroscedasticity in the rates. We additionally illustrate the improved performance offered by the updated method at robust detection of convergent rate shifts in phylogenetic trees of protein-coding genes across mammals, as well as using simulated tree data sets. Overall, we present an important extension to our evolutionary-rates-based method that performs more robustly and consistently at detecting convergent shifts in evolutionary rates.

摘要

鉴定表型适应的基因组元件是进化生物学中的一个重要问题。从特征的趋同进化中学习的比较分析在准确检测此类元件方面正越来越受到重视。我们之前开发了一种通过对比具有表型和不具有表型的物种中序列进化模式来预测遗传元件与表型关联的方法。使用这种方法,我们成功地证明了与两种表型适应相关的遗传元件的趋同进化率变化,即陆地哺乳动物谱系的独立地下和海洋过渡。我们的原始方法使用线性回归在系统发育树的分支上计算基因特异性进化率。这些速率表示在去除由于背景因素导致的分支上的预期分歧之后,分支上的序列分歧程度。使用这种回归分析计算的速率表现出重要的统计限制,即异方差性。我们观察到,平均长度较长的分支上的速率显示出更高的方差,并描述了这个问题如何对我们对率变化进行推断的置信度产生不利影响。我们结合使用数据转换和加权回归,开发了一种更新的方法,该方法可纠正速率中的这种异方差性。我们还说明了更新的方法在稳健检测哺乳动物蛋白质编码基因系统发育树中的趋同率变化以及使用模拟树数据集方面提供的改进性能。总的来说,我们提出了一种重要的方法扩展,该方法在检测进化率的趋同变化方面具有更稳健和一致的性能。

相似文献

6
Convergent evolution of the genomes of marine mammals.海洋哺乳动物基因组的趋同进化。
Nat Genet. 2015 Mar;47(3):272-5. doi: 10.1038/ng.3198. Epub 2015 Jan 26.

引用本文的文献

7
Diverse signatures of convergent evolution in cactus-associated yeasts.仙人掌共生酵母趋同进化的多样特征。
PLoS Biol. 2024 Sep 23;22(9):e3002832. doi: 10.1371/journal.pbio.3002832. eCollection 2024 Sep.

本文引用的文献

4
The UCSC Genome Browser database: 2018 update.UCSC 基因组浏览器数据库:2018 年更新。
Nucleic Acids Res. 2018 Jan 4;46(D1):D762-D769. doi: 10.1093/nar/gkx1020.
9
Epigenomics: Roadmap for regulation.表观基因组学:调控路线图
Nature. 2015 Feb 19;518(7539):314-6. doi: 10.1038/518314a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验