Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Br J Pharmacol. 2019 Aug;176(16):2864-2876. doi: 10.1111/bph.14707. Epub 2019 Jul 2.
The bronchodilator tiotropium binds not only to its main binding site on the M muscarinic receptor but also to an allosteric site. Here, we have investigated the functional relevance of this allosteric binding and the potential contribution of this behaviour to interactions with long-acting β-adrenoceptor agonists, as combination therapy with anticholinergic agents and β-adrenoceptor agonists improves lung function in chronic obstructive pulmonary disease.
ACh, tiotropium, and atropine binding to M receptors were modelled using molecular dynamics simulations. Contractions of bovine and human tracheal smooth muscle strips were studied.
Molecular dynamics simulation revealed extracellular vestibule binding of tiotropium, and not atropine, to M receptors as a secondary low affinity binding site, preventing ACh entry into the orthosteric binding pocket. This resulted in a low (allosteric binding) and high (orthosteric binding) functional affinity of tiotropium in protecting against methacholine-induced contractions of airway smooth muscle, which was not observed for atropine and glycopyrrolate. Moreover, antagonism by tiotropium was insurmountable in nature. This behaviour facilitated functional interactions of tiotropium with the β-agonist olodaterol, which synergistically enhanced bronchoprotective effects of tiotropium. This was not seen for glycopyrrolate and olodaterol or indacaterol but was mimicked by the interaction of tiotropium and forskolin, indicating no direct β-adrenoceptor-M receptor crosstalk in this effect.
We propose that tiotropium has two binding sites at the M receptor that prevent ACh action, which, together with slow dissociation kinetics, may contribute to insurmountable antagonism and enhanced functional interactions with β-adrenoceptor agonists.
支气管扩张剂噻托溴铵不仅与 M 毒蕈碱受体的主要结合部位结合,还与变构结合部位结合。在这里,我们研究了这种变构结合的功能相关性,以及这种行为对长效β-肾上腺素能受体激动剂相互作用的潜在贡献,因为抗胆碱能药物和β-肾上腺素能受体激动剂的联合治疗可改善慢性阻塞性肺疾病患者的肺功能。
使用分子动力学模拟研究了 ACh、噻托溴铵和阿托品与 M 受体的结合。研究了牛和人气管平滑肌条的收缩。
分子动力学模拟显示,噻托溴铵而不是阿托品在 M 受体的细胞外前庭结合,作为次要的低亲和力结合部位,防止 ACh 进入正位结合口袋。这导致噻托溴铵在保护气道平滑肌免受乙酰甲胆碱诱导收缩方面具有低(变构结合)和高(正位结合)功能亲和力,而阿托品和格隆溴铵则没有观察到这种情况。此外,噻托溴铵的拮抗作用是不可逾越的。这种行为促进了噻托溴铵与β-激动剂奥洛达特罗的功能相互作用,协同增强了噻托溴铵的支气管保护作用。这在格隆溴铵和奥洛达特罗或茚达特罗中没有看到,但在噻托溴铵和福司可林的相互作用中模拟出来,表明在这种效应中没有直接的β-肾上腺素能受体-M 受体串扰。
我们提出,噻托溴铵在 M 受体上有两个结合部位,可阻止 ACh 作用,加上缓慢的解离动力学,可能导致不可逾越的拮抗作用,并增强与β-肾上腺素能受体激动剂的功能相互作用。