Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore.
J Agric Food Chem. 2019 Dec 11;67(49):13451-13459. doi: 10.1021/acs.jafc.9b00860. Epub 2019 May 22.
Metabolic engineering aims to balance intracellular pathways and increase the precursor supply. However, some heterologous enzymes are not evolved to support high flux. To remove the limitation, the catalytic properties of rate-limiting enzymes must be enhanced. Here, we engineered carotenoid cleavage dioxygenase 1 (CCD1), whose intrinsic promiscuity and low activity limited the production of α-ionone in . Site-directed mutagenesis was carried out to mutate three structural elements of CCD1: an active site loop, η-helices, and α-helices. Furthermore, mutated CCD1 was fused with lycopene ε-cyclase to facilitate substrate channelling. Collectively, these methods improved the α-ionone concentration by >2.5-fold compared to our previously optimized strain. Lastly, the engineered enzyme was used in conjunction with the metabolic engineering strategy to further boost the α-ionone concentration by another 20%. This work deepens our understanding of CCD1 catalytic properties and proves that integrating enzyme and metabolic engineering can be synergistic for a higher microbial production yield.
代谢工程旨在平衡细胞内途径并增加前体供应。然而,一些异源酶尚未进化以支持高流量。为了消除这种限制,必须增强限速酶的催化特性。在这里,我们对类胡萝卜素裂解双加氧酶 1 (CCD1) 进行了工程改造,其内在的混杂性和低活性限制了 α-突厥酮在 的生产。进行了定点突变以突变 CCD1 的三个结构元件:活性位点环、η-螺旋和 α-螺旋。此外,突变的 CCD1 与番茄红素 ε-环化酶融合,以促进底物通道化。总的来说,与我们之前优化的菌株相比,这些方法将 α-突厥酮的浓度提高了 >2.5 倍。最后,该工程酶与代谢工程策略结合使用,使 α-突厥酮的浓度进一步提高了 20%。这项工作加深了我们对 CCD1 催化特性的理解,并证明了整合酶和代谢工程可以协同作用,以提高微生物的更高生产产量。