Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205-7199 , United States.
Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205-7199 , United States.
ACS Chem Biol. 2019 Jun 21;14(6):1337-1351. doi: 10.1021/acschembio.9b00304. Epub 2019 May 22.
Overexpression of human DNA polymerase kappa (hpol κ) in glioblastoma is associated with shorter survival time and resistance to the alkylating agent temozolomide (TMZ), making it an attractive target for the development of small-molecule inhibitors. We previously reported on the development and characterization of indole barbituric acid-derived (IBA) inhibitors of translesion DNA synthesis polymerases (TLS pols). We have now identified a potent and selective inhibitor of hpol κ based on the indole-aminoguanidine (IAG) chemical scaffold. The most promising IAG analogue, IAG-10, exhibited greater inhibitory action against hpol κ than any other human Y-family member, as well as pols from the A-, B-, and X-families. Inhibition of hpol κ by IAG analogues appears to proceed through a mechanism that is distinct from inhibition of hpol η based on changes in DNA binding affinity and nucleotide insertion kinetics. By way of comparison, both IAG and IBA analogues inhibited binary complex formation by hpol κ and ternary complex formation by hpol η. Decreasing the concentration of enzyme and DNA in the reaction mixture lowered the IC value of IAG-10 to submicromolar values, consistent with inhibition of binary complex formation for hpol κ. Chemical footprinting experiments revealed that IAG-10 binds to a cleft between the finger, little finger, and N-clasp domains on hpol κ and that this likely disrupts the interaction between the N-clasp and the TLS pol core. In cell culture, IAG-10 potentiated the antiproliferative activity and DNA damaging effects of TMZ in hpol κ-proficient cells but not in hpol κ-deficient cells, indicative of a target-dependent effect. Mutagenic replication across alkylation damage increased in hpol κ-proficient cells treated with IAG-10, while no change in mutation frequency was observed for hpol κ-deficient cells. In summary, we developed a potent and selective small-molecule inhibitor of hpol κ that takes advantage of structural features unique to this TLS enzyme to potentiate TMZ, a standard-of-care drug used in the treatment of malignant brain tumors. Furthermore, the IAG scaffold represents a new chemical space for the exploration of TLS pol inhibitors, which could prove useful as a strategy for improving patient response to genotoxic drugs.
人源 DNA 聚合酶 κ(hpol κ)在脑胶质瘤中的过表达与较短的生存时间和对烷化剂替莫唑胺(TMZ)的耐药性相关,使其成为开发小分子抑制剂的有吸引力的靶标。我们之前报道了吲哚巴比妥酸衍生(IBA)的跨损伤 DNA 合成聚合酶(TLS pols)的抑制剂的开发和表征。我们现在基于吲哚-氨基胍(IAG)化学支架,确定了一种有效的 hpol κ选择性抑制剂。最有前途的 IAG 类似物 IAG-10 对 hpol κ的抑制作用大于任何其他人类 Y 家族成员以及 A、B 和 X 家族的 pols。IAG 类似物对 hpol κ 的抑制作用似乎通过一种与基于 DNA 结合亲和力和核苷酸插入动力学变化的 hpol η 抑制不同的机制进行。相比之下,IAG 和 IBA 类似物均抑制 hpol κ 的二元复合物形成和 hpol η 的三元复合物形成。降低反应混合物中酶和 DNA 的浓度将 IAG-10 的 IC 值降低至亚微摩尔值,这与 hpol κ 的二元复合物形成抑制一致。化学足迹实验表明,IAG-10 结合在 hpol κ 的手指、小指和 N 夹区之间的裂隙中,这可能破坏 N 夹与 TLS pol 核心之间的相互作用。在细胞培养中,IAG-10 增强了 hpol κ 阳性细胞中 TMZ 的抗增殖活性和 DNA 损伤作用,但在 hpol κ 缺陷细胞中没有,表明存在依赖于靶标的效应。用 IAG-10 处理的 hpol κ 阳性细胞中,烷基化损伤后的诱变复制增加,而 hpol κ 缺陷细胞的突变频率没有变化。总之,我们开发了一种有效的 hpol κ 选择性小分子抑制剂,该抑制剂利用了这种 TLS 酶的独特结构特征,增强了 TMZ 的作用,TMZ 是治疗恶性脑肿瘤的标准治疗药物。此外,IAG 支架代表了用于探索 TLS pol 抑制剂的新化学空间,这可能有助于提高患者对遗传毒性药物的反应。