Suppr超能文献

工程蛋白-粘土纳米片复合水凝胶与设计富含精氨酸的蛋白质。

Engineering Protein-Clay Nanosheets Composite Hydrogels with Designed Arginine-Rich Proteins.

机构信息

Department of Chemistry , The University of British Columbia , Vancouver , BC V6T 1Z1 , Canada.

State Key Laboratory of Organic-Inorganic Composite Materials , Beijing University of Chemical Technology , Beijing , 100029 , P. R. China.

出版信息

Langmuir. 2019 Jun 4;35(22):7255-7260. doi: 10.1021/acs.langmuir.9b00701. Epub 2019 May 23.

Abstract

Clay nanosheets (CNSs) have been widely used in the design of nanocomposite biomaterials. CNSs display a disk-like morphology with strong negatively charged surfaces. It has been shown that guanidinium-containing molecules can bind CNSs through noncovalent salt-bridge interactions and thus serve as "molecular glues" for CNSs. Making use of the guanidinium side chain in arginine, here, we designed novel arginine-rich elastomeric proteins to engineer protein-CNS nanocomposite hydrogels. Our results showed that these arginine-rich proteins can interact with CNSs effectively and can cross-link CNSs into hydrogels. Rheological measurements showed that mechanical properties of the resultant hydrogels depended on the arginine content in the arginine-rich proteins as well as CNS/protein concentration. Compared with hydrogels constructed from CNSs or proteins alone, the novel protein-CNS nanocomposite hydrogels show much improved mechanical properties. Our work opens up a new avenue to engineer functional protein hydrogels for various applications.

摘要

黏土纳米片(CNSs)已广泛应用于纳米复合生物材料的设计中。CNSs 呈盘状形态,表面带强负电荷。已有研究表明,含胍基的分子可以通过非共价盐桥相互作用与 CNSs 结合,从而充当 CNSs 的“分子胶”。利用精氨酸中的胍基侧链,我们在这里设计了新型富含精氨酸的弹性蛋白,以构建蛋白-CNS 纳米复合水凝胶。我们的结果表明,这些富含精氨酸的蛋白质可以与 CNSs 有效相互作用,并将 CNSs 交联成水凝胶。流变学测量表明,所得水凝胶的机械性能取决于富含精氨酸的蛋白质中的精氨酸含量以及 CNS/蛋白质浓度。与单独由 CNSs 或蛋白质构建的水凝胶相比,新型蛋白-CNS 纳米复合水凝胶显示出显著改善的机械性能。我们的工作为各种应用的功能性蛋白水凝胶的设计开辟了新途径。

相似文献

1
Engineering Protein-Clay Nanosheets Composite Hydrogels with Designed Arginine-Rich Proteins.
Langmuir. 2019 Jun 4;35(22):7255-7260. doi: 10.1021/acs.langmuir.9b00701. Epub 2019 May 23.
4
Photocrosslinkable and elastomeric hydrogels for bone regeneration.
J Biomed Mater Res A. 2016 Apr;104(4):879-88. doi: 10.1002/jbm.a.35621. Epub 2016 Jan 4.
6
Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application.
Macromol Rapid Commun. 2018 Nov;39(21):e1800337. doi: 10.1002/marc.201800337. Epub 2018 Aug 17.
7
Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:168-179. doi: 10.1016/j.msec.2017.11.018. Epub 2017 Nov 24.
8
Nanocomposite Hydrogels and Their Applications in Tissue Engineering.
Adv Healthc Mater. 2017 Jan;6(1). doi: 10.1002/adhm.201600938. Epub 2016 Nov 30.
9
Nanocomposite Hydrogels and Their Applications in Drug Delivery and Tissue Engineering.
J Biomed Nanotechnol. 2015 Jan;11(1):40-52. doi: 10.1166/jbn.2015.1962.
10
Mechanical properties of biocompatible clay/P(MEOMA-co-OEGMA) nanocomposite hydrogels.
J Mech Behav Biomed Mater. 2017 Aug;72:74-81. doi: 10.1016/j.jmbbm.2017.04.026. Epub 2017 Apr 27.

引用本文的文献

1
Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials.
Macromol Biosci. 2021 Sep;21(9):e2100129. doi: 10.1002/mabi.202100129. Epub 2021 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验