IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), University of Queensland, Brisbane, Queensland, 4072, Australia.
Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, CT, 06510, USA.
J Physiol. 2019 Jul;597(14):3751-3768. doi: 10.1113/JP278148. Epub 2019 May 13.
Voltage-gated sodium channels are critical for peripheral sensory neuron transduction and have been implicated in a number of painful and painless disorders. The β-scorpion toxin, Cn2, is selective for Na 1.6 in dorsal root ganglion neurons. Na 1.6 plays an essential role in peripheral sensory neurons, specifically at the distal terminals of mechanosensing fibres innervating the skin and colon. Na 1.6 activation also leads to enhanced response to mechanical stimulus in vivo. This works highlights the use of toxins in elucidating pain pathways moreover the importance of non-peripherally restricted Na isoforms in pain generation.
Peripheral sensory neurons express multiple voltage-gated sodium channels (Na ) critical for the initiation and propagation of action potentials and transmission of sensory input. Three pore-forming sodium channel isoforms are primarily expressed in the peripheral nervous system (PNS): Na 1.7, Na 1.8 and Na 1.9. These sodium channels have been implicated in painful and painless channelopathies and there has been intense interest in them as potential therapeutic targets in human pain. Emerging evidence suggests Na 1.6 channels are an important isoform in pain sensing. This study aimed to assess, using pharmacological approaches, the function of Na 1.6 channels in peripheral sensory neurons. The potent and Na 1.6 selective β-scorpion toxin Cn2 was used to assess the effect of Na 1.6 channel activation in the PNS. The multidisciplinary approach included Ca imaging, whole-cell patch-clamp recordings, skin-nerve and gut-nerve preparations and in vivo behavioural assessment of pain. Cn2 facilitates Na 1.6 early channel opening, and increased persistent and resurgent currents in large-diameter dorsal root ganglion (DRG) neurons. This promotes enhanced excitatory drive and tonic action potential firing in these neurons. In addition, Na 1.6 channel activation in the skin and gut leads to increased response to mechanical stimuli. Finally, intra-plantar injection of Cn2 causes mechanical but not thermal allodynia. This study confirms selectivity of Cn2 on Na 1.6 channels in sensory neurons. Activation of Na 1.6 channels, in terminals of the skin and viscera, leads to profound changes in neuronal responses to mechanical stimuli. In conclusion, sensory neurons expressing Na 1.6 are important for the transduction of mechanical information in sensory afferents innervating the skin and viscera.
电压门控钠离子通道对于周围感觉神经元的转导至关重要,并且与许多疼痛和无痛性疾病有关。β-蝎毒素 Cn2 对背根神经节神经元中的 Na 1.6 具有选择性。Na 1.6 在周围感觉神经元中发挥重要作用,特别是在支配皮肤和结肠的机械感觉纤维的远端末梢。Na 1.6 的激活也导致体内对机械刺激的反应增强。这项工作强调了毒素在阐明疼痛途径中的作用,以及非外周受限的 Na 同工型在疼痛产生中的重要性。
周围感觉神经元表达多种电压门控钠离子通道(Na ),对于动作电位的起始和传播以及感觉输入的传递至关重要。三种孔形成钠通道同工型主要在周围神经系统(PNS)中表达:Na 1.7、Na 1.8 和 Na 1.9。这些钠离子通道与疼痛和无痛性通道病有关,并且作为人类疼痛的潜在治疗靶点引起了极大的兴趣。新出现的证据表明 Na 1.6 通道是疼痛感知的重要同工型。本研究旨在使用药理学方法评估 Na 1.6 通道在周围感觉神经元中的功能。使用强效且对 Na 1.6 具有选择性的β-蝎毒素 Cn2 来评估 PNS 中 Na 1.6 通道激活的影响。这种多学科方法包括 Ca 成像、全细胞膜片钳记录、皮肤神经和肠神经制备以及体内疼痛行为评估。Cn2 促进 Na 1.6 早期通道开放,并增加大直径背根神经节(DRG)神经元中的持续和复出电流。这促进了这些神经元中兴奋性驱动和紧张性动作电位的发射。此外,皮肤和肠道中的 Na 1.6 通道激活导致对机械刺激的反应增加。最后,足底内注射 Cn2 会引起机械性但不是热性痛觉过敏。这项研究证实了 Cn2 在感觉神经元中对 Na 1.6 通道的选择性。Na 1.6 通道的激活,在皮肤和内脏的末梢,导致神经元对机械刺激的反应发生深刻变化。总之,表达 Na 1.6 的感觉神经元对于支配皮肤和内脏的感觉传入纤维中机械信息的转导很重要。