Suppr超能文献

核磁共振波谱法测定,IQOS 加热不燃烧装置气溶胶中几乎不存在游离尼古丁。

Free-Base Nicotine Is Nearly Absent in Aerosol from IQOS Heat-Not-Burn Devices, As Determined by H NMR Spectroscopy.

出版信息

Chem Res Toxicol. 2019 Jun 17;32(6):974-976. doi: 10.1021/acs.chemrestox.9b00076. Epub 2019 May 22.

Abstract

Heat-not-burn products, eg, I quit ordinary smoking (IQOS), are becoming popular alternative tobacco products. The nicotine aerosol protonation state has addiction implications due to differences in absorption kinetics and harshness. Nicotine free-base fraction (α) ranges from 0 to 1. Herein, we report α for IQOS aerosols by exchange-averaged H NMR chemical shifts of the nicotine methyl protons in bulk aerosol and verified by headspace-solid phase microextraction-gas chromatography-mass spectrometry. The α ≈ 0 for products tested; likely a result of proton transfer from acetic acid and/or other additives in the largely aqueous aerosol. Others reported higher α for these products, however, their methods were subject to error due to solvent perturbation.

摘要

加热不燃烧产品,例如 IQOS,正成为流行的替代烟草产品。由于吸收动力学和刺激性的差异,尼古丁气溶胶质子化状态与成瘾有关。尼古丁游离碱分数(α)的范围为 0 到 1。在此,我们通过交换平均化尼古丁甲基质子的 H NMR 化学位移报告了 IQOS 气溶胶中的 α,这在大气溶胶中得到了验证,并通过顶空固相微萃取-气相色谱-质谱法进行了验证。测试的产品的 α≈0;这可能是由于大气溶胶中大部分为水相中存在的乙酸和/或其他添加剂的质子转移所致。其他人报道了这些产品的更高的 α,但由于溶剂干扰,他们的方法存在误差。

相似文献

1
Free-Base Nicotine Is Nearly Absent in Aerosol from IQOS Heat-Not-Burn Devices, As Determined by H NMR Spectroscopy.
Chem Res Toxicol. 2019 Jun 17;32(6):974-976. doi: 10.1021/acs.chemrestox.9b00076. Epub 2019 May 22.
2
Free-Base Nicotine Determination in Electronic Cigarette Liquids by H NMR Spectroscopy.
Chem Res Toxicol. 2018 Jun 18;31(6):431-434. doi: 10.1021/acs.chemrestox.8b00097. Epub 2018 May 23.
4
Measurement of the Free-Base Nicotine Fraction (α) in Electronic Cigarette Liquids by Headspace Solid-Phase Microextraction.
Chem Res Toxicol. 2021 Oct 18;34(10):2227-2233. doi: 10.1021/acs.chemrestox.1c00285. Epub 2021 Oct 5.
5
Vascular endothelial function is impaired by aerosol from a single IQOS HeatStick to the same extent as by cigarette smoke.
Tob Control. 2018 Nov;27(Suppl 1):s13-s19. doi: 10.1136/tobaccocontrol-2018-054325. Epub 2018 Sep 11.
7
Toward Better Characterization of a Free-Base Nicotine Fraction in e-Liquids and Aerosols.
Chem Res Toxicol. 2022 Jul 18;35(7):1234-1243. doi: 10.1021/acs.chemrestox.2c00041. Epub 2022 Jun 10.
8
Fraction of Free-Base Nicotine in Simulated Vaping Aerosol Particles Determined by X-ray Spectroscopies.
J Phys Chem Lett. 2023 Feb 9;14(5):1279-1287. doi: 10.1021/acs.jpclett.2c03748. Epub 2023 Jan 31.
10
Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products.
Chem Res Toxicol. 2019 Jun 17;32(6):1289-1298. doi: 10.1021/acs.chemrestox.9b00085. Epub 2019 Apr 12.

引用本文的文献

1
Determination of Nicotine Protonation State in E-Liquids by Low-Resolution Benchtop NMR Spectroscopy.
Chem Res Toxicol. 2024 Aug 19;37(8):1283-1289. doi: 10.1021/acs.chemrestox.3c00417. Epub 2024 Jul 25.
2
Direct Extraction and Determination of Free Nicotine in Cigarette Smoke.
J Anal Methods Chem. 2024 May 4;2024:9273705. doi: 10.1155/2024/9273705. eCollection 2024.
3
Po and Pb content in the smoke of Heated Tobacco Products versus Conventional Cigarette smoking.
Sci Rep. 2022 Jun 20;12(1):10314. doi: 10.1038/s41598-022-14200-2.
4
The influence of terpenes on the release of volatile organic compounds and active ingredients to cannabis vaping aerosols.
RSC Adv. 2021 Mar 23;11(19):11714-11723. doi: 10.1039/d1ra00934f. eCollection 2021 Mar 16.
5
Nicotine forms: why and how do they matter in nicotine delivery from electronic cigarettes?
Expert Opin Drug Deliv. 2020 Dec;17(12):1727-1736. doi: 10.1080/17425247.2020.1814736. Epub 2020 Sep 17.
6
Characterization of Nicotine Salts in 23 Electronic Cigarette Refill Liquids.
Nicotine Tob Res. 2020 Jun 12;22(7):1239-1243. doi: 10.1093/ntr/ntz232.

本文引用的文献

2
Influence of machine-based puffing parameters on aerosol and smoke emissions from next generation nicotine inhalation products.
Regul Toxicol Pharmacol. 2019 Feb;101:156-165. doi: 10.1016/j.yrtph.2018.11.006. Epub 2018 Nov 13.
3
Accurate measurement of main aerosol constituents from heated tobacco products (HTPs): Implications for a fundamentally different aerosol.
Regul Toxicol Pharmacol. 2018 Nov;99:131-141. doi: 10.1016/j.yrtph.2018.09.016. Epub 2018 Sep 19.
4
Heat-not-burn tobacco products: a systematic literature review.
Tob Control. 2019 Sep;28(5):582-594. doi: 10.1136/tobaccocontrol-2018-054419. Epub 2018 Sep 4.
5
IQOS: examination of Philip Morris International's claim of reduced exposure.
Tob Control. 2018 Nov;27(Suppl 1):s30-s36. doi: 10.1136/tobaccocontrol-2018-054321. Epub 2018 Aug 29.
6
Invisible smoke: third-party endorsement and the resurrection of heat-not-burn tobacco products.
Tob Control. 2018 Nov;27(Suppl 1):s96-s101. doi: 10.1136/tobaccocontrol-2018-054433. Epub 2018 Jun 6.
7
Free-Base Nicotine Determination in Electronic Cigarette Liquids by H NMR Spectroscopy.
Chem Res Toxicol. 2018 Jun 18;31(6):431-434. doi: 10.1021/acs.chemrestox.8b00097. Epub 2018 May 23.
8
iQOS: evidence of pyrolysis and release of a toxicant from plastic.
Tob Control. 2019 Jan;28(1):34-41. doi: 10.1136/tobaccocontrol-2017-054104. Epub 2018 Mar 13.
10
They're heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products.
PLoS One. 2017 Oct 11;12(10):e0185735. doi: 10.1371/journal.pone.0185735. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验