Motta Mario, Shee James, Zhang Shiwei, Chan Garnet Kin-Lic
Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.
Department of Chemistry , Columbia University , New York , New York 10027 , United States.
J Chem Theory Comput. 2019 Jun 11;15(6):3510-3521. doi: 10.1021/acs.jctc.8b00996. Epub 2019 May 30.
We describe an algorithm to reduce the cost of auxiliary-field quantum Monte Carlo (AFQMC) calculations for the electronic structure problem. The technique uses a nested low-rank factorization of the electron repulsion integral (ERI). While the cost of conventional AFQMC calculations in Gaussian bases scales as , where N is the size of the basis, we show that ground-state energies can be computed through tensor decomposition with reduced memory requirements and subquartic scaling. The algorithm is applied to hydrogen chains and square grids, water clusters, and hexagonal BN. In all cases, we observe significant memory savings and, for larger systems, reduced, subquartic simulation time.
我们描述了一种用于降低电子结构问题的辅助场量子蒙特卡罗(AFQMC)计算成本的算法。该技术使用电子排斥积分(ERI)的嵌套低秩分解。虽然在高斯基下传统AFQMC计算的成本按 缩放,其中N是基的大小,但我们表明基态能量可以通过张量分解来计算,同时降低内存需求并实现低于四次方的缩放比例。该算法应用于氢链、方形网格、水团簇和六边形氮化硼。在所有情况下,我们都观察到显著的内存节省,并且对于更大的系统,模拟时间减少且低于四次方。