Suppr超能文献

通过低秩张量分解在高斯基中进行高效的从头算辅助场量子蒙特卡罗计算。

Efficient Ab Initio Auxiliary-Field Quantum Monte Carlo Calculations in Gaussian Bases via Low-Rank Tensor Decomposition.

作者信息

Motta Mario, Shee James, Zhang Shiwei, Chan Garnet Kin-Lic

机构信息

Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.

Department of Chemistry , Columbia University , New York , New York 10027 , United States.

出版信息

J Chem Theory Comput. 2019 Jun 11;15(6):3510-3521. doi: 10.1021/acs.jctc.8b00996. Epub 2019 May 30.

Abstract

We describe an algorithm to reduce the cost of auxiliary-field quantum Monte Carlo (AFQMC) calculations for the electronic structure problem. The technique uses a nested low-rank factorization of the electron repulsion integral (ERI). While the cost of conventional AFQMC calculations in Gaussian bases scales as , where N is the size of the basis, we show that ground-state energies can be computed through tensor decomposition with reduced memory requirements and subquartic scaling. The algorithm is applied to hydrogen chains and square grids, water clusters, and hexagonal BN. In all cases, we observe significant memory savings and, for larger systems, reduced, subquartic simulation time.

摘要

我们描述了一种用于降低电子结构问题的辅助场量子蒙特卡罗(AFQMC)计算成本的算法。该技术使用电子排斥积分(ERI)的嵌套低秩分解。虽然在高斯基下传统AFQMC计算的成本按 缩放,其中N是基的大小,但我们表明基态能量可以通过张量分解来计算,同时降低内存需求并实现低于四次方的缩放比例。该算法应用于氢链、方形网格、水团簇和六边形氮化硼。在所有情况下,我们都观察到显著的内存节省,并且对于更大的系统,模拟时间减少且低于四次方。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验