Fefferman B, Foss-Feig M, Gorshkov A V
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
United States Army Research Laboratory, Adelphi, Maryland 20783, USA.
Phys Rev A (Coll Park). 2017;96. doi: 10.1103/PhysRevA.96.032324.
We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.
我们研究了从伊辛自旋模型的输出分布中进行经典采样的复杂性,该模型可以在各种原子、分子和光学系统中自然实现。特别地,我们构造了一个伊辛哈密顿量的具体例子,从一个平凡的初始状态开始时间演化后,它产生特定输出配置的概率几乎与一个具有任意整数项的矩阵的永久值的平方成正比。与玻色子采样类似,能够从这个哈密顿量下时间演化所诱导的概率分布中进行经典采样将意味着不太可能的复杂性理论结果,这表明这样一个自旋模型的动力学不能用经典计算机有效地模拟。在不久的将来,可能会实现能够达到足够大的问题规模实例(即量子比特数)的物理伊辛自旋系统,使得对输出分布进行经典采样在实践中变得困难。与玻色子采样不同,我们目前的结果仅意味着经典采样的困难性,留下了一个重要问题未解决,即在这种情况下是否存在更强的近似采样困难性结果。后者对于实现令人信服的量子优越性实验演示很可能是必要的。正如最近一篇论文[A. Bouland, L. Mancinska, and X. Zhang, in International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, Dagstuhl, 2016)]中所引用的,我们的结果完成了两量子比特对易哈密顿量的采样困难性分类。