Suppr超能文献

展示具有原子量子比特的小型可编程量子计算机。

Demonstration of a small programmable quantum computer with atomic qubits.

机构信息

Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA.

Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Nature. 2016 Aug 4;536(7614):63-6. doi: 10.1038/nature18648.

Abstract

Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

摘要

量子计算机在解决某些问题上比任何可能的传统计算机都更有效率。已经在多个量子计算平台上展示了小型量子算法,其中许多在硬件上专门针对实现特定算法或执行有限数量的计算路径进行了定制。在这里,我们展示了一台五量子比特囚禁离子量子计算机,该计算机可以通过执行任何通用量子逻辑门的序列在软件中进行编程,从而实现任意量子算法。我们将算法编译成一组完全连接的门操作,这些门操作是硬件原生的,平均保真度为 98%。重新配置这些门序列提供了灵活性,可以在不改变硬件的情况下实现各种算法。作为示例,我们分别以 95%和 90%的平均成功率实现了 Deutsch-Jozsa 和 Bernstein-Vazirani 算法。我们还在五个囚禁离子量子比特上执行了相干量子傅里叶变换,用于相位估计和周期查找,平均保真度分别为 62%和 84%。这个小型量子计算机可以在单个寄存器内扩展到更多数量的量子比特,并且可以通过离子穿梭或光子量子通道连接几个这样的模块进一步扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验