Suppr超能文献

量化荟萃分析下限估计的不确定性。

Quantifying uncertainty in the meta-analytic lower bound estimate.

机构信息

Department of Psychology.

出版信息

Psychol Methods. 2019 Dec;24(6):754-773. doi: 10.1037/met0000217. Epub 2019 May 16.

Abstract

In meta-analyses, it is customary to compute a confidence interval for the overall mean effect (ρ̄ or δ̄), but not for the underlying standard deviation (τ) or the lower bound of the credibility value (90%CV), even though the latter entities are often as important to the interpretation as is the overall mean. We introduce 2 methods of computing confidence intervals for the lower bound (Lawless and bootstrap). We compare both methods using 3 lower bound estimators (Schmidt-Hunter, Schmidt-Hunter with correction, and Morris/Hedges, labeled HOV/HOV) in 2 Monte Carlo studies (1 for correlations and 1 for standardized mean differences) and illustrate their application to published meta-analyses. For correlations, we found that HOV bootstrap confidence intervals yielded coverage greater than 90% across a wide variety of conditions provided that there were at least 25 studies. For the standardized mean difference, all 3 methods produced acceptable results using the bootstrap for the lower bound confidence interval provided that there were at least 20 studies with an average sample size of at least 50. When the number of studies was small ( = 8 or 10), coverage was less than 90% and confidence intervals were very wide. Even with larger numbers of studies, if there was indirect range restriction coupled with a small underlying between-studies variance, the between-studies variance was poorly estimated and coverage of the lower bound suffered. We provide software to allow meta-analysts to compute bootstrap confidence intervals for the estimators described in the article. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

摘要

在荟萃分析中,通常会计算总体均值效应(ρ̄或δ̄)的置信区间,但不会计算潜在的标准差(τ)或可信度值(90%CV)的下限,尽管后两者对于解释与总体均值一样重要。我们介绍了计算置信区间下限的 2 种方法(Lawless 和 bootstrap)。我们使用 3 种下限估计器(Schmidt-Hunter、Schmidt-Hunter 校正和 Morris/Hedges,标记为 HOV/HOV)在 2 项蒙特卡罗研究中(1 项用于相关性,1 项用于标准化均数差异)比较了这两种方法,并说明了它们在已发表的荟萃分析中的应用。对于相关性,我们发现 HOV bootstrap 置信区间在广泛的条件下提供了大于 90%的覆盖范围,前提是至少有 25 项研究。对于标准化均数差异,所有 3 种方法在使用 bootstrap 进行下限置信区间时都产生了可接受的结果,前提是至少有 20 项研究,平均样本量至少为 50。当研究数量较少(=8 或 10)时,覆盖范围小于 90%,置信区间非常宽。即使研究数量较多,如果存在间接范围限制且潜在的研究间方差较小,则研究间方差估计不准确,下限的覆盖范围受到影响。我们提供了软件,允许荟萃分析人员计算本文中描述的估计器的 bootstrap 置信区间。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验