Psychology Department, University of South Florida, Tampa, Florida, USA.
Department of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA.
Res Synth Methods. 2021 May;12(3):264-290. doi: 10.1002/jrsm.1479. Epub 2021 Mar 11.
Tolerance intervals provide a bracket intended to contain a percentage (e.g., 80%) of a population distribution given sample estimates of the mean and variance. In random-effects meta-analysis, tolerance intervals should contain researcher-specified proportions of underlying population effect sizes. Using Monte Carlo simulation, we investigated the coverage for five relevant tolerance interval estimators: the Schmidt-Hunter credibility intervals, a prediction interval, two content tolerance intervals adapted to meta-analysis, and a bootstrap tolerance interval. None of the intervals contained the desired percentage of coverage at the nominal rates in all conditions. However, the prediction worked well unless the number of primary studies was small (<30), and one of the content tolerance intervals approached nominal levels with small numbers (<20) of primary studies. The bootstrap tolerance interval achieved near nominal coverage if there were sufficient numbers of primary studies (30+) and large enough sample sizes (N ≅ 70) in the included primary studies, although it slightly exceeded nominal coverage with large numbers of large-sample primary studies. Next, we showed the results of applying the intervals to real data using a set of previously published analyses and provided suggestions for practice. Tolerance intervals incorporate error of estimation into the construction of proper brackets for fractions of population true effects. In many contexts, such intervals approach the desired nominal levels of coverage.
容忍区间提供了一个区间,旨在包含给定均值和方差样本估计的总体分布的百分比(例如 80%)。在随机效应荟萃分析中,容忍区间应包含研究人员指定的潜在总体效应大小的比例。我们使用蒙特卡罗模拟研究了五种相关的容忍区间估计量的覆盖范围:施密特-亨特可信度区间、预测区间、两个适应荟萃分析的内容容忍区间以及自举容忍区间。在所有条件下,没有一个区间以名义率包含所需的百分比覆盖。然而,预测效果很好,除非主要研究的数量很少(<30),并且两个内容容忍区间中的一个在主要研究的数量较少(<20)的情况下接近名义水平。如果纳入的主要研究中有足够数量的主要研究(30+)和足够大的样本量(N ≅ 70),自举容忍区间可实现接近名义的覆盖范围,尽管在大量大样本主要研究中,它略有超过名义覆盖范围。接下来,我们使用一组先前发表的分析结果展示了在实际数据中应用这些区间的结果,并提供了实践建议。容忍区间将估计误差纳入到构建总体真实效应分数的适当区间中。在许多情况下,这种区间接近所需的名义覆盖水平。