Department of Internal Medicine, Yale University School of Medicine, New Haven.
Veterans Administration Connecticut Healthcare System, West Haven, CT.
Med Care. 2019 Jun;57 Suppl 6 Suppl 2(Suppl 6 2):S157-S163. doi: 10.1097/MLR.0000000000001049.
Electronic health records (EHRs) are a rich source of health information; however social determinants of health, including incarceration, and how they impact health and health care disparities can be hard to extract.
The main objective of this study was to compare sensitivity and specificity of patient self-report with various methods of identifying incarceration exposure using the EHR.
Validation study using multiple data sources and types.
Participants of the Veterans Aging Cohort Study (VACS), a national observational cohort based on data from the Veterans Health Administration (VHA) EHR that includes all human immunodeficiency virus-infected patients in care (47,805) and uninfected patients (99,060) matched on region, age, race/ethnicity, and sex.
Self-reported incarceration history compared with: (1) linked VHA EHR data to administrative data from a state Department of Correction (DOC), (2) linked VHA EHR data to administrative data on incarceration from Centers for Medicare and Medicaid Services (CMS), (3) VHA EHR-specific identifier codes indicative of receipt of VHA incarceration reentry services, and (4) natural language processing (NLP) in unstructured text in VHA EHR.
Linking the EHR to DOC data: sensitivity 2.5%, specificity 100%; linking the EHR to CMS data: sensitivity 7.9%, specificity 99.3%; VHA EHR-specific identifier for receipt of reentry services: sensitivity 7.3%, specificity 98.9%; and NLP, sensitivity 63.5%, specificity 95.9%.
NLP tools hold promise as a feasible and valid method to identify individuals with exposure to incarceration in EHR. Future work should expand this approach using a larger body of documents and refinement of the methods, which may further improve operating characteristics of this method.
电子健康记录(EHR)是健康信息的丰富来源;然而,健康的社会决定因素,包括监禁,以及它们如何影响健康和医疗保健差距,很难从中提取。
本研究的主要目的是比较患者自我报告与使用 EHR 识别监禁暴露的各种方法的敏感性和特异性。
使用多种数据源和类型进行验证研究。
退伍军人老龄化队列研究(VACS)的参与者,这是一个基于退伍军人健康管理局(VHA)EHR 数据的全国观察队列,其中包括所有接受治疗的人类免疫缺陷病毒感染患者(47805 人)和未感染患者(99060 人),根据地区、年龄、种族/族裔和性别进行匹配。
自我报告的监禁史与:(1)与 VHA EHR 数据链接的州惩教部(DOC)行政数据,(2)与 VHA EHR 数据链接的医疗保险和医疗补助服务中心(CMS)关于监禁的行政数据,(3)VHA EHR 特有的指示符代码,表明接受了 VHA 监禁重返社会服务,以及(4)VHA EHR 中未结构化文本的自然语言处理(NLP)。
将 EHR 与 DOC 数据链接:敏感性 2.5%,特异性 100%;将 EHR 与 CMS 数据链接:敏感性 7.9%,特异性 99.3%;VHA EHR 特定标识符用于接收再入服务:敏感性 7.3%,特异性 98.9%;和 NLP,敏感性 63.5%,特异性 95.9%。
NLP 工具作为一种可行且有效的方法来识别 EHR 中接触监禁的个体具有前景。未来的工作应该使用更大的文档集和方法的改进来扩展这种方法,这可能会进一步提高这种方法的操作特性。