Suppr超能文献

使用电子健康记录测量监禁暴露。

Measuring Exposure to Incarceration Using the Electronic Health Record.

机构信息

Department of Internal Medicine, Yale University School of Medicine, New Haven.

Veterans Administration Connecticut Healthcare System, West Haven, CT.

出版信息

Med Care. 2019 Jun;57 Suppl 6 Suppl 2(Suppl 6 2):S157-S163. doi: 10.1097/MLR.0000000000001049.

Abstract

BACKGROUND

Electronic health records (EHRs) are a rich source of health information; however social determinants of health, including incarceration, and how they impact health and health care disparities can be hard to extract.

OBJECTIVE

The main objective of this study was to compare sensitivity and specificity of patient self-report with various methods of identifying incarceration exposure using the EHR.

RESEARCH DESIGN

Validation study using multiple data sources and types.

SUBJECTS

Participants of the Veterans Aging Cohort Study (VACS), a national observational cohort based on data from the Veterans Health Administration (VHA) EHR that includes all human immunodeficiency virus-infected patients in care (47,805) and uninfected patients (99,060) matched on region, age, race/ethnicity, and sex.

MEASURES AND DATA SOURCES

Self-reported incarceration history compared with: (1) linked VHA EHR data to administrative data from a state Department of Correction (DOC), (2) linked VHA EHR data to administrative data on incarceration from Centers for Medicare and Medicaid Services (CMS), (3) VHA EHR-specific identifier codes indicative of receipt of VHA incarceration reentry services, and (4) natural language processing (NLP) in unstructured text in VHA EHR.

RESULTS

Linking the EHR to DOC data: sensitivity 2.5%, specificity 100%; linking the EHR to CMS data: sensitivity 7.9%, specificity 99.3%; VHA EHR-specific identifier for receipt of reentry services: sensitivity 7.3%, specificity 98.9%; and NLP, sensitivity 63.5%, specificity 95.9%.

CONCLUSIONS

NLP tools hold promise as a feasible and valid method to identify individuals with exposure to incarceration in EHR. Future work should expand this approach using a larger body of documents and refinement of the methods, which may further improve operating characteristics of this method.

摘要

背景

电子健康记录(EHR)是健康信息的丰富来源;然而,健康的社会决定因素,包括监禁,以及它们如何影响健康和医疗保健差距,很难从中提取。

目的

本研究的主要目的是比较患者自我报告与使用 EHR 识别监禁暴露的各种方法的敏感性和特异性。

研究设计

使用多种数据源和类型进行验证研究。

受试者

退伍军人老龄化队列研究(VACS)的参与者,这是一个基于退伍军人健康管理局(VHA)EHR 数据的全国观察队列,其中包括所有接受治疗的人类免疫缺陷病毒感染患者(47805 人)和未感染患者(99060 人),根据地区、年龄、种族/族裔和性别进行匹配。

措施和数据来源

自我报告的监禁史与:(1)与 VHA EHR 数据链接的州惩教部(DOC)行政数据,(2)与 VHA EHR 数据链接的医疗保险和医疗补助服务中心(CMS)关于监禁的行政数据,(3)VHA EHR 特有的指示符代码,表明接受了 VHA 监禁重返社会服务,以及(4)VHA EHR 中未结构化文本的自然语言处理(NLP)。

结果

将 EHR 与 DOC 数据链接:敏感性 2.5%,特异性 100%;将 EHR 与 CMS 数据链接:敏感性 7.9%,特异性 99.3%;VHA EHR 特定标识符用于接收再入服务:敏感性 7.3%,特异性 98.9%;和 NLP,敏感性 63.5%,特异性 95.9%。

结论

NLP 工具作为一种可行且有效的方法来识别 EHR 中接触监禁的个体具有前景。未来的工作应该使用更大的文档集和方法的改进来扩展这种方法,这可能会进一步提高这种方法的操作特性。

相似文献

1
Measuring Exposure to Incarceration Using the Electronic Health Record.
Med Care. 2019 Jun;57 Suppl 6 Suppl 2(Suppl 6 2):S157-S163. doi: 10.1097/MLR.0000000000001049.
2
Using the Medicare Current Beneficiary Survey to conduct research on Medicare-eligible veterans.
J Rehabil Res Dev. 2010;47(8):797-813. doi: 10.1682/jrrd.2009.10.0174.
3
Long-term care service mix in the Veterans Health Administration after home care expansion.
Health Serv Res. 2021 Dec;56(6):1126-1136. doi: 10.1111/1475-6773.13687. Epub 2021 Jun 3.
4
Pain research using Veterans Health Administration electronic and administrative data sources.
J Rehabil Res Dev. 2016;53(1):1-12. doi: 10.1682/JRRD.2014.10.0246.
5
Validating smoking data from the Veteran's Affairs Health Factors dataset, an electronic data source.
Nicotine Tob Res. 2011 Dec;13(12):1233-9. doi: 10.1093/ntr/ntr206. Epub 2011 Sep 12.
6
Comorbidities, healthcare use, and contact with healthcare transition services in older veterans after incarceration.
J Am Geriatr Soc. 2024 Jun;72(6):1847-1855. doi: 10.1111/jgs.18885. Epub 2024 Mar 25.

引用本文的文献

4
Identifying incarceration status in the electronic health record using large language models in emergency department settings.
J Clin Transl Sci. 2024 Mar 11;8(1):e53. doi: 10.1017/cts.2024.496. eCollection 2024.
5
Social and Behavioral Determinants of Health in the Era of Artificial Intelligence with Electronic Health Records: A Scoping Review.
Health Data Sci. 2021 Aug 24;2021:9759016. doi: 10.34133/2021/9759016. eCollection 2021.
6
How legal problems are conceptualized and measured in healthcare settings: a systematic review.
Health Justice. 2023 Nov 18;11(1):48. doi: 10.1186/s40352-023-00246-5.
7
Substance Use Disorders, Mental Illness, and Health Care Utilization Among Adults With Recent Criminal Legal Involvement.
Psychiatr Serv. 2024 Mar 1;75(3):221-227. doi: 10.1176/appi.ps.20220491. Epub 2023 Sep 7.
10
Health Status and Health Care Utilization of US Adults Under Probation: 2015-2018.
Am J Public Health. 2020 Sep;110(9):1411-1417. doi: 10.2105/AJPH.2020.305777. Epub 2020 Jul 16.

本文引用的文献

1
Health Literacy Among a Formerly Incarcerated Population Using Data from the Transitions Clinic Network.
J Urban Health. 2018 Aug;95(4):547-555. doi: 10.1007/s11524-018-0276-0.
2
Implementation of Health Information Exchange at the Pima County Adult Detention Complex: Lessons Learned.
J Correct Health Care. 2018 Apr;24(2):183-196. doi: 10.1177/1078345818764127.
3
What Does Health Justice Look Like for People Returning from Incarceration?
AMA J Ethics. 2017 Sep 1;19(9):903-910. doi: 10.1001/journalofethics.2017.19.9.ecas4-1709.
4
Incarceration History and Uncontrolled Blood Pressure in a Multi-Site Cohort.
J Gen Intern Med. 2016 Dec;31(12):1496-1502. doi: 10.1007/s11606-016-3857-1. Epub 2016 Sep 12.
5
Patients' experiences managing cardiovascular disease and risk factors in prison.
Health Justice. 2016;4:4. doi: 10.1186/s40352-016-0035-9. Epub 2016 Apr 2.
7
Using Electronic Health Records for Population Health Research: A Review of Methods and Applications.
Annu Rev Public Health. 2016;37:61-81. doi: 10.1146/annurev-publhealth-032315-021353. Epub 2015 Dec 11.
8
Identifying Homelessness among Veterans Using VA Administrative Data: Opportunities to Expand Detection Criteria.
PLoS One. 2015 Jul 14;10(7):e0132664. doi: 10.1371/journal.pone.0132664. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验