Department of Internal Medicine, Yale School of Medicine, New Haven.
VA Connecticut Healthcare System, US Department of Veteran Affairs, West Haven, CT.
Med Care. 2023 Apr 1;61(4):200-205. doi: 10.1097/MLR.0000000000001824. Epub 2023 Feb 3.
Collection of accurate Hispanic ethnicity data is critical to evaluate disparities in health and health care. However, this information is often inconsistently recorded in electronic health record (EHR) data.
To enhance capture of Hispanic ethnicity in the Veterans Affairs EHR and compare relative disparities in health and health care.
We first developed an algorithm based on surname and country of birth. We then determined sensitivity and specificity using self-reported ethnicity from the 2012 Veterans Aging Cohort Study survey as the reference standard and compared this to the research triangle institute race variable from the Medicare administrative data. Finally, we compared demographic characteristics and age-adjusted and sex-adjusted prevalence of conditions in Hispanic patients among different identification methods in the Veterans Affairs EHR 2018-2019.
Our algorithm yielded higher sensitivity than either EHR-recorded ethnicity or the research triangle institute race variable. In 2018-2019, Hispanic patients identified by the algorithm were more likely to be older, had a race other than White, and foreign born. The prevalence of conditions was similar between EHR and algorithm ethnicity. Hispanic patients had higher prevalence of diabetes, gastric cancer, chronic liver disease, hepatocellular carcinoma, and human immunodeficiency virus than non-Hispanic White patients. Our approach evidenced significant differences in burden of disease among Hispanic subgroups by nativity status and country of birth.
We developed and validated an algorithm to supplement Hispanic ethnicity information using clinical data in the largest integrated US health care system. Our approach enabled clearer understanding of demographic characteristics and burden of disease in the Hispanic Veteran population.
准确收集西班牙裔族群数据对于评估健康和医疗保健方面的差异至关重要。然而,这些信息在电子健康记录 (EHR) 数据中常常记录不一致。
增强退伍军人事务部电子健康记录中西班牙裔族群的信息采集,并比较健康和医疗保健方面的相对差异。
我们首先基于姓氏和出生地开发了一种算法。然后,我们使用 2012 年退伍军人老龄化队列研究调查中的自我报告种族作为参考标准,确定了敏感性和特异性,并将其与医疗保险管理数据中的研究三角研究所种族变量进行了比较。最后,我们比较了退伍军人事务部电子健康记录 2018-2019 年中不同识别方法的西班牙裔患者的人口统计学特征以及年龄和性别调整后的疾病患病率。
我们的算法比 EHR 记录的种族或研究三角研究所种族变量具有更高的敏感性。在 2018-2019 年,通过算法识别的西班牙裔患者年龄更大,种族不是白人,并且是外国出生。EHR 和算法种族之间的疾病患病率相似。与非西班牙裔白人患者相比,西班牙裔患者的糖尿病、胃癌、慢性肝病、肝细胞癌和人类免疫缺陷病毒的患病率更高。我们的方法证明了西班牙裔亚群中按出生国和出生地划分的疾病负担存在显著差异。
我们开发并验证了一种使用美国最大的综合医疗保健系统中的临床数据补充西班牙裔族群信息的算法。我们的方法使我们能够更清楚地了解西班牙裔退伍军人人口的人口统计学特征和疾病负担。