Suppr超能文献

心脏电建模用于植入式设备的闭环验证。

Cardiac Electrical Modeling for Closed-Loop Validation of Implantable Devices.

出版信息

IEEE Trans Biomed Eng. 2020 Feb;67(2):536-544. doi: 10.1109/TBME.2019.2917212. Epub 2019 May 16.

Abstract

OBJECTIVE

Evaluating and testing cardiac electrical devices in a closed-physiologic-loop can help design safety, but this is rarely practical or comprehensive. Furthermore, in silico closed-loop testing with biophysical computer models cannot meet the requirements of time-critical cardiac device systems, while simplified models meeting time-critical requirements may not have the necessary dynamic features. We propose a new high-level (abstracted) physiologically-based computational heart model that is time-critical and dynamic.

METHODS

The model comprises cardiac regional cellular-electrophysiology types connected by a path model along a conduction network. The regional electrophysiology and paths are modeled with hybrid automata that capture non-linear dynamics, such as action potential and conduction velocity restitution and overdrive suppression. The hierarchy of pacemaker functions is incorporated to generate sinus rhythms, while abnormal automaticity can be introduced to form a variety of arrhythmias such as escape ectopic rhythms. Model parameters are calibrated using experimental data and prior model simulations.

CONCLUSION

Regional electrophysiology and paths in the model match human action potentials, dynamic behavior, and cardiac activation sequences. Connected in closed loop with a pacing device in DDD mode, the model generates complex arrhythmia such as atrioventricular nodal reentry tachycardia. Such device-induced outcomes have been observed clinically and we can establish the key physiological features of the heart model that influence the device operation.

SIGNIFICANCE

These findings demonstrate how an abstract heart model can be used for device validation and to design personalized treatment.

摘要

目的

在封闭的生理循环中评估和测试心脏电子设备有助于设计安全性,但这很少是可行或全面的。此外,使用生物物理计算机模型进行模拟闭环测试无法满足时间关键型心脏设备系统的要求,而满足时间关键要求的简化模型可能不具有必要的动态特征。我们提出了一种新的基于高级(抽象)生理的计算心脏模型,该模型具有时间关键和动态特性。

方法

该模型由通过传导网络连接的心脏区域细胞电生理学类型组成。区域电生理学和路径采用混合自动机建模,该自动机可以捕获诸如动作电位和传导速度恢复和超速抑制等非线性动力学。起搏器功能的层次结构被纳入以产生窦性节律,而异常自动性可以被引入以形成各种心律失常,例如逸搏性异位节律。使用实验数据和先前的模型模拟对模型参数进行校准。

结论

模型中的区域电生理学和路径与人类动作电位、动态行为和心脏激活序列相匹配。与 DDD 模式下的起搏设备连接成闭环,该模型会产生复杂的心律失常,例如房室结折返性心动过速。已经在临床上观察到这种设备引起的结果,我们可以确定影响设备操作的心脏模型的关键生理特征。

意义

这些发现表明了抽象心脏模型如何用于设备验证和设计个性化治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验