Zhao Gang, Pang Bo, Xu Zongxue, Peng Dingzhi, Xu Liyang
College of Water Sciences, Beijing Normal University; Beijing 100875, China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China; School of Geographical Science, University of Bristol, Bristol BS8 1SS, UK.
College of Water Sciences, Beijing Normal University; Beijing 100875, China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China.
Sci Total Environ. 2019 Apr 1;659:940-949. doi: 10.1016/j.scitotenv.2018.12.217. Epub 2018 Dec 15.
In order to identify flood-prone areas with limited flood inventories, a semi-supervised machine learning model-the weakly labeled support vector machine (WELLSVM)-is used to assess urban flood susceptibility in this study. A spatial database is collected from metropolitan areas in Beijing, including flood inventories from 2004 to 2014 and nine metrological, geographical, and anthropogenic explanatory factors. Urban flood susceptibility is mapped and compared using logistic regression, artificial neural networks, and a support vector machine. Model performances are evaluated using four evaluation indices (accuracy, precision, recall, and F-score) as well as the receiver operating characteristic curve. The results show that WELLSVM can better utilize the spatial information (unlabeled data), and it outperforms all comparison models. The high-quality WELLSVM flood susceptibility map is thus applicable to efficient urban flood management.
为了识别洪水清单有限的易洪区,本研究使用了一种半监督机器学习模型——弱标记支持向量机(WELLSVM)来评估城市洪水易发性。从北京的大都市区收集了一个空间数据库,包括2004年至2014年的洪水清单以及九个气象、地理和人为解释因素。使用逻辑回归、人工神经网络和支持向量机对城市洪水易发性进行制图和比较。使用四个评估指标(准确率、精确率、召回率和F值)以及接收器操作特性曲线来评估模型性能。结果表明,WELLSVM能够更好地利用空间信息(未标记数据),并且其性能优于所有比较模型。因此,高质量的WELLSVM洪水易发性地图适用于高效的城市洪水管理。