Suppr超能文献

一种基于机器学习的新型洪水风险制图方法,考虑了地貌和社会经济脆弱性维度。

A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions.

机构信息

Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India.

Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India.

出版信息

Sci Total Environ. 2022 Dec 10;851(Pt 1):158002. doi: 10.1016/j.scitotenv.2022.158002. Epub 2022 Aug 17.

Abstract

Quantifying flood hazards by employing hydraulic/hydrodynamic models for flood risk mapping is a widely implemented non-structural flood management strategy. However, the unavailability of multi-domain and multi-dimensional input data and expensive computational resources limit its application in resource-constrained regions. The fifth and sixth IPCC assessment reports recommend including vulnerability and exposure components along with hazards for capturing risk on human-environment systems from natural and anthropogenic sources. In this context, the present study showcases a novel flood risk mapping approach that considers a combination of geomorphic flood descriptor (GFD)-based flood susceptibility and often neglected socio-economic vulnerability components. Three popular Machine Learning (ML) models, namely Decision Tree (DT), Random Forest (RF), and Gradient-boosted Decision Trees (GBDT), are evaluated for their abilities to combine digital terrain model-derived GFDs for quantifying flood susceptibility in a flood-prone district, Jagatsinghpur, located in the lower Mahanadi River basin, India. The area under receiver operating characteristics curve (AUC) along with Cohen's kappa are used to identify the best ML model. It is observed that the RF model performs better compared to the other two models on both training and testing datasets, with AUC score of 0.88 on each. The socio-economic vulnerability assessment follows an indicator-based approach by employing the Charnes-Cooper-Rhodes (CCR) model of Data Envelopment Analysis (DEA), an efficient non-parametric ranking method. It combines the district's relevant socio-economic sensitivity and adaptive capacity indicators. The flood risk classes at the most refined administrative scale, i.e., village level, are determined with the Jenks natural breaks algorithm using flood susceptibility and socio-economic vulnerability scores estimated by the RF and CCR-DEA models, respectively. It was observed that >40 % of the villages spread over Jagatsinghpur face high and very high flood risk. The proposed novel framework is generic and can be used to derive a wide variety of flood susceptibility, vulnerability, and subsequently risk maps under a data-constrained scenario. Furthermore, since this approach is relatively data and computationally parsimonious, it can be easily implemented over large regions. The exhaustive flood maps will facilitate effective flood control and floodplain planning.

摘要

利用水力/水动力模型量化洪水灾害以进行洪水风险图绘制是一种广泛实施的非结构性洪水管理策略。然而,多领域和多维输入数据的不可用性以及昂贵的计算资源限制了其在资源有限地区的应用。第五和第六次 IPCC 评估报告建议将脆弱性和暴露成分以及危害纳入其中,以从自然和人为来源捕获人类-环境系统的风险。在这种情况下,本研究展示了一种新的洪水风险图绘制方法,该方法考虑了基于地貌洪水描述符 (GFD) 的洪水易感性以及经常被忽视的社会经济脆弱性成分。评估了三种流行的机器学习 (ML) 模型,即决策树 (DT)、随机森林 (RF) 和梯度提升决策树 (GBDT),以评估它们结合数字地形模型衍生的 GFD 来量化印度马哈纳迪河下游杰格特辛格布尔地区洪水易发区洪水易感性的能力。使用接收器操作特征曲线 (ROC) 下的面积 (AUC) 以及科恩的 kappa 来识别最佳 ML 模型。观察到 RF 模型在训练和测试数据集上的表现均优于其他两个模型,在每个数据集上的 AUC 得分均为 0.88。社会经济脆弱性评估采用基于指标的方法,采用数据包络分析 (DEA) 的 Charnes-Cooper-Rhodes (CCR) 模型,这是一种有效的非参数排序方法。它结合了该地区相关的社会经济敏感性和适应能力指标。使用 Jenks 自然断点算法,根据 RF 和 CCR-DEA 模型分别估算的洪水易感性和社会经济脆弱性得分,在最精细的行政尺度,即村庄层面,确定洪水风险等级。观察到杰格特辛格布尔的 40%以上的村庄面临高风险和极高风险的洪水。所提出的新框架是通用的,可以在数据受限的情况下用于生成各种洪水易感性、脆弱性,以及随后的风险图。此外,由于这种方法相对数据和计算上较为精简,因此可以轻松地在较大区域内实施。详尽的洪水图将有助于有效进行洪水控制和洪泛区规划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验