Suppr超能文献

伊朗北部哈拉斯流域洪水易发性建模的决策树算法比较评估

A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

机构信息

Department of Watershed Management Engineering, Faculty of Natural Resources, Sari Agricultural Science and Natural Resources University, Sari, Iran.

Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.

出版信息

Sci Total Environ. 2018 Jun 15;627:744-755. doi: 10.1016/j.scitotenv.2018.01.266. Epub 2018 Feb 2.

Abstract

Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas.

摘要

洪水是最具破坏性的自然灾害之一,会造成巨大的财产、基础设施和生命损失。由于气候条件和人为因素的突然变化,洪水发生地点的预测非常困难。然而,借助机器学习技术,可以预先识别洪水易灾区,以便对洪水灾害进行适当的及时管理。在这项研究中,我们测试了四种基于决策树的机器学习模型,即逻辑模型树(LMT)、简化错误修剪树(REPT)、朴素贝叶斯树(NBT)和交替决策树(ADT),用于伊朗北部 Haraz 流域的洪水易发性制图。为此,构建了一个具有 201 个当前和过去洪水位置以及 11 个洪水影响因素的空间数据库,这些因素包括地面坡度、海拔、曲率、水流功率指数(SPI)、地形湿度指数(TWI)、土地利用、降雨量、河流密度、距河流的距离、岩性和归一化差异植被指数(NDVI)。统计评估指标、接收器操作特征(ROC)曲线以及 Friedman 和 Wilcoxon 符号秩检验用于验证和比较模型的预测能力。结果表明,ADT 模型在洪水易发性评估方面具有最高的预测能力,其次是 NBT、LMT 和 REPT。这些技术已被证明可用于快速确定洪水易灾区。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验